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Motor proteins are active enzyme molecules that play a crucial role in many biological processes. They
transform chemical energy into mechanical work and move unidirectionally along rigid cytoskeleton filaments.
Single-molecule experiments indicate that motor proteins, consisting of two motor domains, move in a hand-
over-hand mechanism where each subunit changes between trailing and leading positions in alternating steps,
and it is assumed that these subunits do not interact with each other. However, recent experiments on het-
erodimeric kinesins suggest that the motion of motor domains is not independent, but rather strongly coupled
and coordinated, although the mechanism of these interactions is not known. We propose a simple discrete
stochastic model to describe the dynamics of homodimeric and heterodimeric two-headed motor proteins. It is
argued that interactions between motor domains modify original free energy landscapes for each motor subunit,
while motor proteins still move via the hand-over-hand mechanism but with different transition rates specified
by the new free energy profiles. Our calculations of biophysical properties agree with experimental observa-
tions. Several ways to test the theoretical model are proposed.
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I. INTRODUCTION

Several classes of enzyme molecules that convert chemi-
cal energy into mechanical motion are called motor proteins,
or molecular motors. In recent years, these proteins have
attracted significant attention because of their importance for
multiple biological processes �1–5�. Motor proteins, such as
kinesins, myosins, dyneins, polymerases, and helicases,
move in a linear fashion along rigid biopolymers �actin fila-
ments, microtubules, DNA and RNA molecules�. Typically,
fuel for the motion of these nanomotors comes from the
hydrolysis of adenosine triphosphate �ATP� or related com-
pounds. Although some progress in understanding the
mechanisms of motor proteins has been achieved �2,4,5�,
there are still many unresolved issues. One of the most im-
portant fundamental questions concerning motor proteins is
how different domains of these enzymes coordinate and
regulate their complex dynamics and functions. The goal of
this paper is to address some aspects of this issue from the
theoretical point of view.

The enzymatic activity of motor proteins takes place in
the so-called motor subunits that contain ATP-binding sites.
Motor proteins typically have several such domains. The
functioning of molecular motors strongly depends on the
relative position and dynamics of these subunits �2,5�. Two
possible mechanisms for two-headed motor proteins have
been proposed: an inchworm motion and a hand-over-hand
mechanism �2,6,7�. In the inchworm mechanism one motor
domain is always in the leading position, while the other one
always trails. However, in the hand-over-hand mechanism
the motor domains alternate their leading and trailing posi-
tions as the motor protein molecule proceeds along the fila-
ment track. Single-molecule experiments that utilized fluo-
rescent imaging with one-nanometer accuracy �FIONA� and
optical trapping methods have shown that individual double-
headed kinesins, myosins V and VI, and cytoplasmic dyneins
step in the hand-over-hand fashion �8–13�. Thus, this mecha-
nism explains the stepping dynamics of the majority of mo-
tor protein species.

In the current version of the hand-over-hand mechanism,
it is assumed that the two heads move independently of each
other, i.e., when the trailing motor subunit moves its dynam-
ics is not affected by the presence of the other motor subunit.
Then the mean dwell time to advance one step forward for a
heterodimeric motor protein with two heads labeled as A and
B is given by

�A-B =
1

2
��A-A + �B-B� , �1�

where �A-A and �B-B are the mean dwell times for ho-
modimeric A-A and B-B motor proteins, respectively. The
corresponding relation for the velocity can be written as

VA-B =
2VA-AVB-B

VA-A + VB-B
. �2�

However recent single-molecule investigations of dynamics
of kinesins �14� do not support these relations, and, conse-
quently, the independence of the two motor domains during
the motion is put in doubt. In these experiments force-
velocity curves and enzymatic activities have been measured
for different homodimeric and heterodimeric kinesins. Sur-
prisingly, it was shown that the velocity of the heterodimeric
kinesin with a mutation in one of the motor heads is not
given by Eq. �2�. It was suggested that the two heads
strongly influence each other’s dynamic and enzymatic prop-
erties, although the mechanism was not specified. In this
paper we present a simple discrete stochastic model that
might explain several aspects of the complex dynamics of
heterodimeric kinesins. Our main idea is that motor domains
interact with each other and significantly modify the overall
dynamics by changing the motor proteins’ free energy land-
scapes.

Theoretical investigations of molecular motors follow
several approaches that include continuum ratchets �15,16�,
discrete stochastic models �5�, and computer simulations
�17,18�. In this work we utilize a discrete stochastic approach
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because it conveniently provides explicit expressions for dy-
namic properties, and it is able to describe successfully dif-
ferent aspects and trends of motor protein transport
�5,7,19–26�.

II. THEORETICAL MODEL

In our theoretical model it is assumed that the kinesin
protein molecule steps from a given binding site to the next
one at a distance d=8.2 nm along the microtubule through N
intermediate biochemical states. Different kinetic schemes
for the motion of homodimeric and heterodimeric kinesin
molecules are shown in Fig. 1. A similar approach has been
used successfully to describe the dynamic properties of kine-
sins and myosin V �5,19,23,24�.

Let us label homodimeric motor proteins of wild type as
W-W, homodimeric motor proteins with mutations in both
heads as M-M, and heterodimeric proteins with only one
mutated motor domain as W-M. Although the motion of mo-
tor proteins includes many complex biochemical and bio-
physical processes, in the simplest approximation it is rea-
sonable to use only two-state �N=2� discrete stochastic
models to describe the dynamics of both homodimeric kine-
sins; see Fig. 1. Note, however, that a two-state chemical
kinetic model as presented here is not adequate to describe
fluctuations in the dynamics �5�. The motor protein molecule
can jump forward from a state 0 to a state 1 with the rate u0,
and this transition corresponds to ATP binding, yielding

u0 = k0�ATP� , �3�

where k0 is the rate constant. The reverse transition is given
by the rate w1. The forward and backward transitions be-
tween the state 1 and the state 0 on the next binding site,
with the rates u1 and w0, respectively, describe several bio-
chemical processes, such as ATP hydrolysis and release of
hydrolysis products, but combine them in one step. We as-
sume that mutations do not strongly affect the ATP binding

process, but only the enzymatic functions are changed,
which leads to a different pair of transition rates �u1� and w0��
for the mutated molecule �see Fig. 1�. Experiments show that
some mutations decrease the binding affinity of motor pro-
teins to microtubules, thus leading to decrease in enzymatic
activity �14�. The transition rates for W-W and M-M motor
proteins are related via the detailed balance condition,

u1�

w0�
=

u1

w0
exp�− �/kBT� . �4�

This expression connects the ratio of the forward and back-
ward transition rates with a free energy difference between
the corresponding states. The parameter � describes the ef-
fect of mutation on enzymatic properties of the motor pro-
tein, i.e., how ATP hydrolysis for the mutated homodimer is
thermodynamically less favorable in comparison with that of
the wild-type homodimer. The microscopic origin of this pa-
rameter is the result of complex interactions between the two
motor domains and between the motor heads and the micro-
tubule track.

The situation is more complex for heterodimeric W-M
kinesins, as illustrated in Fig. 1. The two motor domains and
interactions between them are different from the cases of
homodimer kinesins. As a result we have two different sets
of rates to model ATP hydrolysis by the wild head �u1

�1� and
w0

�1�� and by the mutated head �u1
�2� and w0

�2��. These rates are
also related via detailed balance conditions,

u1
�1�

w0
�1� =

u1

w0
exp�− �1/kBT�,

u1
�2�

w0
�2� =

u1

w0
exp�− �2/kBT� . �5�

It is important to note that generally �1��2��, because of
different interactions between the motor domains. Then, as-
suming that the hand-over-hand mechanism is still a valid
description for the stepping of individual molecules, the dy-
namics of W-M kinesin molecules can be described by an
�N=4�-state model with step size equal to 2d=16.4 nm.

The explicit expressions for the rates can be obtained
from Eqs. �4� and �5�:

u1� = u1�−�, u1
�1� = u1�1

−�1, u1
�2� = u1�2

−�2 �6�

and

w0� = w0�1−�, w0
�1� = w0�1

1−�1, w0
�2� = w0�2

1−�2, �7�

where we defined

� = exp� �

kT
�, �1 = exp� �1

kT
�, �2 = exp� �2

kT
� . �8�

The parameters �, �1, and �2 are energy-distribution factors
that describe how free energy changes due to the mutation
affect corresponding forward and backward transitions. For
simplicity, we assume that �=�1=�2, although more general
situations can be easily analyzed.

The advantage of using discrete stochastic models is the
fact that all stationary-state dynamic properties of motor pro-
teins, such as mean velocities, mean dispersions, and stall
forces, can be obtained exactly for any number of interme-
diate states N in terms of the forward �uj� and backward �wj�
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FIG. 1. �Color online� General schematic view of discrete sto-
chastic models for kinesins. W-W labels the homodimeric motor
protein with both wild-type motor heads, M-M corresponds to the
homodimeric kinesins with mutations in both motor domains, while
W-M describes the heterodimeric motor proteins with mutation in
only one of the heads. The parameters �, �1, and �2 describe free
energy changes due to mutations relative to the wild-type motor
proteins.
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transition rates �5,21,23�. Specifically, exact expressions for
the mean velocity can be presented in the following form:

V =
d

RN
�1 − �

j=0

N−1
wj

uj
� , �9�

where d is the step size �equal to 8.2 nm for the N=2 model
and 16.4 nm for the N=4 model�, and the auxiliary functions
RN are given by

RN = �
j=0

N−1

rj, rj =
1

uj
�1 + �

k=1

N−1

�
i=j+1

j+k
wi

ui
� . �10�

Specifically, for the velocity of homodimeric motor proteins
we obtain

V�W-W� = d� u0u1 − w0w1

u0 + u1 + w0 + w1
� �11�

for W-W kinesins, and

V�M-M� = d� u0u1�−� − w0w1�1−�

u0 + u1�−� + w0�1−� + w1
� �12�

for M-M kinesins. For heterodimeric motor proteins, Eq. �9�
yields

V�W-M� = 2d�u0
2u1

2��1�2�−� − w0
2w1

2��1�2�1−�

A
� , �13�

with the parameter A given by

A = ��1
−� + �2

−��u0u1�u0 + w1� + ��1
1−� + �2

1−��w0w1�u0 + w1�

+ ��1�2�−���1 + �2�u1w0�u0 + w1�

+ 2��1�2�−��u0u1
2 + w0

2w1�1�2� . �14�

The general expression for dispersion in sequential discrete
stochastic models can be written in the following form
�5,21,23�:

D = �d/N���VSN + dUN�/�RN�2 − �N + 2�V/2� , �15�

where

SN = �
j=0

N−1

sj�
k=0

N−1

rk+j+1, UN = �
j=0

N−1

ujrjsj , �16�

sj =
1

uj
�1 + �

k=1

N−1

�
i=j−1

j−k
wi+1

ui
� .

The explicit equations for dispersions of W-W, M-M, and
W-M kinesins can be obtained similarly to the velocities;
however, these expressions are quite bulky and they will not
be presented here.

When the motor protein is subject to external loads, the
resisting force that completely stops the molecule is called
the stall force FS. For general N-state sequential discrete-
stochastic models the stall force can be written as �5,19�

FS =
kBT

d
ln��

j=0

N−1
wj

uj
� . �17�

For homodimeric kinesins our model predicts the following
stall forces:

FS�W-W� =
kBT

d
ln

u0u1

w0w1
, FS�M-M� =

kBT

d
ln

u0u1

w0w1�
.

�18�

Comparing these equations, we obtain

FS�M-M� = FS�W-W� − �/d . �19�

For heterodimeric kinesins the stall force is given by

FS�W-M� =
kBT

2d
ln

u0
2u1

2

w0
2w1

2�1�2
, �20�

which leads to

FS�W-M� = FS�W-W� − ��1 + �2�/2d . �21�

Equations �19� and �21� provide a simple physical interpre-
tation and a method of estimating the parameters �, �1, and
�2.

The external force F also strongly modifies the transitions
rates �5,19�:

uj�F� = uj�0�exp�−
� j

+Fd

kBT
� , �22�

wj�F� = wj�0�exp�+
� j

−Fd

kBT
� , �23�

where � j
� are load-distribution factors that describe how the

external load changes the energy activation barriers for the
forward and backward biochemical transitions from the state
j. The load-distribution factors are related via

�
j=0

N−1

�� j
+ + � j

−� = 1. �24�

III. RESULTS AND DISCUSSION

In the experimental work of Kaseda et al. �14�, the coor-
dination of two heads for different homodimeric and het-
erodimeric kinesin molecules has been investigated using
microtubule-gliding assays and optical trapping spectros-
copy. Different homodimeric and heterodimeric motor pro-
teins were prepared by mutations in the motor domains that
affect the microtubule-binding region. It was found that dy-
namic properties of heterodimeric proteins with one mutated
head could not be described by the independent hand-over-
hand stepping mechanism.

To analyze the experimental data we consider kinesins
with only one type of mutation, although our method can be
easily applied to different molecular motor species. Specifi-
cally, it was shown �14� that at �ATP�=1 mM a wild-type
homodimer travels with the stationary velocity V�W-W�
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=679�59 nm /s, and it produces the maximum stall force of
FS�W-W�=6.3�0.9 pN. When the mutation labeled L12 af-
fects both motor heads, the resulting homodimeric M-M ki-
nesin does not attach to microtubules, indicating zero veloc-
ity and stall force. However, surprisingly, a heterodimer with
the same mutation L12 in one of the motor heads can move
with the velocity V�W-M�=101�25 nm /s, while exerting
the maximal stall force of FS�W-M�=0.8�0.2 pN. Then,
from Eqs. �19� and �21� we obtain

� = �12.6 � 1.8�kBT, ��1 + �2�/2 = �11 � 4.4�kBT .

�25�

The important result is that �1+�2	2�, which indicates that
biochemical properties of mutated and wild-type motor
heads in the W-M kinesin differ from the corresponding
properties in the W-W and M-M motor proteins, supporting
our idea of modifying the free energy landscapes for motor
proteins via interaction between motor subunits.

After systematically exploring the parameter space and
following the procedures outlined in Refs. �24,26�, we found
that all experimental data for kinesins with the L12 mutation
can be well described by the following parameters:

k0 = 1.2 
M−1 s−1, u1 = 90 s−1, w1 = 10 s−1,

w0 = 0.05 s−1,

� = 0.14, � = 12.3kBT, �1 = �2 = 10.6kBT . �26�

In this fitting procedure the stall forces have been calculated
from the best-fitted transition rates, and then the FS have
been used to estimate energy-distribution parameters. Note
that the obtained transition rates are similar to the parameters
previously utilized to describe the dynamics of single kines-
ins, and they are consistent with chemical kinetic experimen-
tal results �23�. In addition, in our calculations we found that
the following load-distribution factors fit experimental obser-
vations well:

�0
+ = 0.135, �1

− = 0.080, �1
+ = 0.035, �0

− = 0.750.

�27�

Also, these load-distribution factors are close to the param-
eters used before for analyzing other single-molecule experi-
ments on kinesins �23�, suggesting that our approach is quite
robust.

The results of theoretical calculations for the velocities of
homodimeric and heterodimeric kinesins at different condi-
tions are presented in Fig. 2. The effect of external loads on
the motor protein dynamics is shown in Fig. 2�a�, and a good
agreement with experimental observations is found. Our ap-
proach allows us to estimate the effect of resisting and as-
sisting external forces. The resisting �positive� loads slow
down the motion of all motor proteins, as expected. It is also
found that the stall forces FS for W-W and W-M kinesins are
equal to 6.2 and 0.8 pN, respectively, which are in excellent
agreement with experimentally measured values �14�. The
assisting �negative forces� accelerate both W-W and W-M
motor proteins, although the effect is much weaker for the
heterodimeric species. The force-velocity curve for het-

erodimers is essentially linear for positive forces, while for
homodimeric W-W kinesins it deviates from the linear de-
pendence. Again, this theoretical result agrees well with ex-
perimental observations �compare with Fig. 4�b� from Ref.
�14��. The dependence of the velocity on the concentration of
ATP �see Fig. 2�b�� shows a typical Michaelis-Menten char-
acter, i.e., a linear behavior at small concentrations of ATP
and a saturation at large �ATP�. One of the important theo-
retical predictions of our model is that the heterodimeric ki-
nesin with the L12 mutation in one of the motor heads will
not function �V=0� even without an external resisting force
�F=0� for ATP concentrations smaller than 1.4 mM. This
theoretical prediction can be easily tested in experiments.

In addition to the mean velocity, an important character-
istic of the motor protein dynamics is the diffusion constant
or dispersion �5�. In our theoretical framework it can be cal-
culated exactly, and the results of these computations are
given in Fig. 3. It should be noted that �N=2�-state stochastic
models utilized here do not provide a correct description of
dispersions �5�; however, our analysis still can be used to
show relative differences in fluctuations for different motor
proteins. In addition, our analysis can be easily extended to
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FIG. 2. �Color online� �a� Force-velocity curves for W-W ho-
modimeric kinesins �solid line� and for W-M heterodimeric kinesins
�dashed line� at �ATP�=1 mM. Symbols correspond to experimen-
tal measurements from Ref. �14�. �b� Velocities of W-W ho-
modimeric kinesins �solid line� and W-M heterodimeric kinesins
�dashed line� as a function of �ATP� at the constant external force
F=0.5 pN. The velocity of homodimeric M-M kinesins is zero at
all conditions.
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more realistic stochastic models. The effect of external forces
on dispersions for homodimeric and heterodimeric kinesins
is shown Fig. 3�a�. External loads have qualitatively different
effects on the fluctuations of wild-type and mutated motor
proteins. Dispersion for homodimeric W-W kinesins is a de-
creasing function of the external load, while for ho-
modimeric M-M and heterodimeric proteins it has a non-
monotonic behavior. At negative loads up to low positive
forces �F�1 pN� the dispersions of W-M and M-M kinesins
decrease, although weakly. However, for larger opposing ex-
ternal forces dispersions start to increase. Dispersion as a
function of �ATP� is plotted in Fig. 3�b�. Again, the behavior
of heterodimeric W-M proteins and fully mutated ho-
modimeric kinesins are similar, and it deviates significantly
from W-W motor proteins.

In the presented theoretical calculations we assume that
the step size for wild-type and mutated motor proteins is the
same. This is based on the fact that the L12 mutation affects
only microtubule binding affinity �14�. However, exact mea-
surements of step sizes have not been performed. Even in the
case of variability of step sizes for different motor proteins,
our approach is flexible enough to take this effect into ac-
count �5�.

The presented theoretical method is closely related to an
earlier approach of Peskin and Oster �6�, where a model of
force generation in kinesins coupled to ATP hydrolysis has
been developed. Similarly to this approach, we suggest that
the transition rates for the leading and trailing motor heads
depend on complex interactions between the motor heads
and protein filaments. In contrast to Ref. �6�, we analyze
heterodimeric motor proteins with a more detailed descrip-
tion of chemical processes and ATP hydrolysis. Our method
allows us to estimate the effect of mutations in the transport
of motor proteins on qualitative and quantitative scales.

Our theoretical calculations of dynamic properties and
analysis of the experimental observations for homodimeric
and heterodimeric kinesins suggest the following mechanis-
tic �however strongly simplified� picture of the motor protein
dynamics. Mutations change the free energy landscapes for
the enzymatic activity and the mechanical progression of
molecular motors. However, motor domains in W-W, M-M,
and W-M proteins interact with each other differently, lead-
ing to different free energy surfaces. As a result, the two
heads in the heterodimeric molecule become very similar in
biochemical properties, but different from the corresponding
motor domains in the homodimers. The heterodimeric motor
protein still moves along the microtubules in the hand-over-
hand mechanism, although with the transition rates modified
by interaction between the motor heads. We suggest that this
theoretical picture can be tested in experiments by, for ex-
ample, labeling the two motor domains differently to obtain
necessary dynamic information.

Although our theoretical approach does not explain the
origin of the interactions between motor heads, we can dis-
cuss several possible sources of these interactions. In the
hand-over-hand mechanism of the motion of motor proteins
�2,6�, when the back motor head moves forward, it is always
connected to the linear track via the forward head, leading to
an effective interaction between motor domains. In addition,
the coiled-coil region that connects motor domains might
also coordinate their motion. The heads can also interact via
electrostatic interactions, dipole interactions, and van der
Waals forces. However, these suggestions are speculative,
and the nature of interactions should be determined in more
detailed experiments.

IV. CONCLUSIONS

We developed a simple theoretical description of the dy-
namics of motor proteins based on discrete sequential sto-
chastic models. This approach allows us to resolve the con-
tradiction between experimental observations on
homodimeric and heterodimeric kinesins and the widely ac-
cepted hand-over-hand stepping mechanism for two-headed
molecular motors. It is argued that the interaction between
motor domains can modify free energy landscapes for the
motor protein motion, and the transitions rates change de-
pending on the nature of these domains. Explicit calculations
of dynamics properties, such as velocities, dispersions, and
stall forces, T are presented for homodimeric and het-
erodimeric kinesins with L12 mutations. The theoretical pre-
dictions agree well with available experimental data. Several
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FIG. 3. �Color online� �a� Dispersion as a function of the exter-
nal force for W-W homodimeric kinesins �solid line�, for ho-
modimeric M-M kinesins �dot-dashed line�, and for W-M het-
erodimeric kinesins �dashed line� at �ATP�=1 mM. �b� Dispersions
of W-W homodimeric kinesins �solid line�, homodimeric M-M ki-
nesins �dot-dashed line�, and W-M heterodimeric kinesins �dashed
line� as a function of �ATP� at the constant external force F
=0.5 pN.
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suggestions for testing theoretical predictions are discussed.
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