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Motivated by biological transport phenomena and vehicular traffic flow we investigate the dynamics of
interacting molecular motors or interacting vehicles that move along linear filaments (tracks) and can reversibly
associate or dissociate from them. To analyze these processes, we introduced a model assimilating the
interactions in a totally asymmetric simple exclusion process coupled with nonconserving Langmuir kinetics.
The model is analyzed first using the continuum version of the simple mean-field approach that neglects the
correlations between the particles. It is shown that even for weak interactions theoretical predictions deviate
significantly from computer simulation results. To alleviate the problems, we developed a theoretical method
that takes into account some correlations in the system. The effect of interactions on stationary phase diagrams,
particle currents, and densities are explicitly evaluated. The analysis of two-point correlation function on the
lattice indicates that the correlations are stronger at the locations of localized shocks. Our theoretical calculations
are in excellent agreement with Monte Carlo computer simulations.
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I. INTRODUCTION

A one-dimensional (1D) driven diffusive system (DDS)
belongs to a special class of nonequilibrium systems that
exhibit rich emergent properties [ 1-5]. A characteristic feature
of these systems which distinguishes them from the equi-
librium systems is the ever-present flow of particles in the
steady state [6]. The DDS has become a popular research topic
due to its wide applications, such as ribosomes motion along
RNA [7,8], motor movement along molecular tracks [6], cars
proceeding on highways [9,10], vesicle locomotion [11], etc.,
occurring in physics, chemistry, and biology. The simplest
driven model, the totally asymmetric simple exclusion process
(TASEP), introduced originally in 1968 to model the kinetics
of biopolymerization [12], has become a paradigmatic model
in enlightening the nature of nonequilibrium steady states of
DDS. In TASEP, a single species of particle hops unidirection-
ally with unit step size and a uniform rate along a 1D lattice.
Here the particles interact only under the hard-core exclusion
effect, which prohibits two or more particles from occupying
the same lattice site at the same time. In the presence of
open boundary conditions, the TASEP demonstrates several
interesting phenomena, such as boundary-induced phase tran-
sitions, phase separation, and phase segregation [2,13].

The simple TASEP when coupled with the equilibrium
process, the Langmuir kinetics (LK), displays remarkable
features, such as localized shock in the steady-state density
profiles contributing to distinguishing high-low coexistence
(shock) phase in the phase diagram [14,15]. The additional
dynamics of the stochastic absorption and desorption pro-
cesses (LK) in the bulk of TASEP was motivated by transport
processes such as the beginning of a traffic jam on a motorway
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where incoming cars have to slow down very quickly over
a short distance [16]. The finite processivity of molecular
motors also leads to the switching between phases of directed
and diffusive motion. During the latter, they are not attached
to filament but move randomly through the cytoplasm un-
der the constraints of other cytoskeletal elements [6]. The
competition between the nonequilibrium process TASEP and
the equilibrium process LK is possible when the attachment
and detachment kinetic rates are rescaled such that they are
inversely proportional to the system size. The simple TASEP-
LK model was theoretically analyzed using the continuum
simple mean-field (SMF) approximation, and the obtained
density and current profiles coincided with the Monte Carlo
simulations [14,15]. Later, the formation of localized shocks
in 1D DDS with LK was analyzed using the hydrodynamic
approach [17]. It was argued there that the agreement of the
simple mean-field (SMF) results with Monte Carlo simula-
tions for the simple TASEP-LK system is due to the absence
of correlations in the steady state of the system.

Several experiments provide evidence of the existence
of mutual interactions among motor proteins, in particular
kinesin-1. It is observed that in the presence of an obstacle, a
molecular motor walking on a microtubule (molecular track)
tends to stay attached for a longer time [18]. Nearest-neighbor
repulsive interactions are also evident in traffic flow, where a
car slows down if its next nearest-neighboring site is occupied
[16]. Besides LK, the presence of mutual interactions among
particles also has a major impact on the steady-state prop-
erties of DDS. The driven exclusion processes with nearest-
neighbor interactions and without LK have been extensively
studied for a single [1,16,19-29] as well as multilane TASEP
systems [30,31], using the thermodynamically consistent
[27-31] and phenomenological approaches [1,16,19-25]. The
interactions in these systems are theoretically handled using
the cluster mean-field and the modified cluster mean-field
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approaches. The major assumption in these theories is that the
density and current are uniform throughout the lattice.

It is interesting to see how the system’s dynamical prop-
erties behave when both the LK and the interactions are
incorporated into the TASEP. In Ref. [17] it was predicted
that the generic model of interacting driven diffusive systems,
known as the Katz-Lebowitz-Spohn (KLS) model [1,19], in
combination with LK can be explored using the hydrody-
namic approach. Moreover, they observe that the KLLS model
with LK shows exotic features such as localized shocks and
phase separation [17,20]. Recently, the effect of LK also has
been investigated on the interacting TASEP systems, which
view interactions in a thermodynamically consistent way [32].
The model was theoretically analyzed using the continuum
SMF approach, and it was found that even in the presence of
weak interactions, the density and the current profiles deviate
from the simulation results [32]. However, neither the KLS
model nor any other interacting system is explored with the
effect of interactions on the LK process as well.

Experiments indicate a long-range cooperative binding of
kinesin as well as the dependency of detachment rates on the
biochemical state of the motors, which might be identified
with the presence or absence of neighboring motors [33].
This sheds light on the importance of considering mutual
interactions in the attachment-detachment processes as well.
Further, it is also important to study the nonequilibrium
steady-state properties of driven diffusive systems with LK,
where the mutual interactions affect the dynamics of both the
simple TASEP with open boundaries and the LK process. Re-
cently the behavior of mutually interactive Langmuir kinetics
coupled with the simple TASEP (without interactions) was
analyzed using the continuum continuum SMF description
and Monte Carlo simulations [34]. They observed that when
mutual interactions affect the LK rates antisymmetrically,
the continuum SMF results vary from the simulations. The
reason behind the mismatching of the results is the ignorance
of correlations by the SMF approximation. Moreover, the
model had a major limitation that the mutual interactions are
considered only in the LK process and not in the open TASEP.
Since the interactions modify the dynamics of both the TASEP
and the LK process, it becomes necessary and interesting
to work on a model incorporating interactions for both the
TASEP and the LK process. It also encourages development
of a theoretical approach that can handle correlations in an
open interactive TASEP-LK system.

To answer how the mutual interactions affect the combined
dynamics of open TASEP and LK process, we present and
study a model comprising interactive TASEP coupled with
mutually interactive Langmuir kinetics.

In Sec. II we describe the model and obtain the master
equations for the change in the average density profile. We
analyze the system using the SMF approximation in Sec. III.
We found that even in the presence of weak interactions, the
results start deviating from the simulations, and for the large
interactions the maximal particle current blows up. In Sec. IV
we introduce an approach called the correlated cluster mean-
field theory that takes into account the correlations between
nearest-neighbor sites. In Sec. V we derive and discuss the
impact of interactions on the phase diagrams and the density
profiles. The current and the correlation profiles under the

effect of interactions are analyzed in Sec. VI. We discuss
the role of LK rates and finite system size on the density
profiles and phase diagrams in Sec. VII. All theoretical results
from the proposed theory are validated with Monte Carlo
simulations. We conclude in Sec. VIIIL.

II. MODEL DESCRIPTION AND MASTER EQUATIONS

The model consists of a 1D open lattice with N (N >
1) sites, which may represent a molecular track or a traffic
highway. Correspondingly, the particles distributed over the
lattice mimic the motor proteins such as kinesins, dyneins,
and myosins on a molecular track or vehicles on a highway.
The particles move unidirectionally in a random-sequential
manner under the hard-core exclusion principle. Both ends of
the lattice are coupled with two different reservoirs of constant
density o and 1 — B, respectively, that drive the nonzero
particle current into the system. We assign an occupation
number T7; to each lattice site i (i = 1, 2, ..., N), which takes
the value 1 when the site is occupied and O otherwise. First, we
redefine the dynamics of the open simple TASEP-LK system
in three subprocesses:

(i) Entrance of particles from the left reservoir to the site
1 with a rate o and their ejection from the site N to the right
reservoir with a rate 8.

(i) Hopping of a particle at site i to site i + 1, for i =
1,2,..., N — 1, with unit rate.

(iii) Stochastic attachment of particles from the surround-
ing environment to the bulk sites, 2, 3, ..., N — 1, with arate
w, and detachment of the particles from the bulk sites to the
surrounding environment with a rate w,. This process is called
Langmuir kinetics.

Note that in each of the above process, a particle can make
a move only when the target site is empty, thus respecting
the exclusion principle. To incorporate the effect of nearest-
neighbor particles’ interactions in an open TASEP-LK system,
we assume that the two nearest-neighboring particles, when
bound to the filament, are associated with an energy E. We
assign a rate g for bond formation and a rate r for bond
breaking, where the rates ¢ and r are related via

E— 1)
;

and E is expressed in units of kg T'. The above relation follows
from the visualization of the process of bond making and bond
breaking as opposite reversible chemical reactions [27-29].
We also introduce a splitting parameter 6 (0 < 6 < 1) that
quantifies how the energy E affects the hopping rates g and r.
The explicit values of rates ¢ and r are then given as g = e/
and r = ¢®~DE_We choose 6 = 0.5, which splits interaction
energy E symmetrically on the rates g and r, as well as
incorporates the maximum effect of E on both rates g and
r simultaneously. It further makes the rates g and r inversely
proportional to each other.

When the interactions are attractive (£ > 0), the bond
formation occurs faster, ¢ > 1, but the breaking of bonds
occur slower, r < 1, whereas in the case of repulsive inter-
actions (E < 0), the system does not favor the bond making,
implying ¢ < 1 and r > 1. The case of repulsive interactions
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FIG. 1. Schematic view of the single lane TASEP-LK system under the effect of mutual interactions.

also reflects the realistic interactions found in vehicular traffic
[16].

The consideration of mutual interactions in the open
TASEP-LK system modifies the hopping rates of all its three
subprocesses. When a particle hops, the number of bonds in
the system may increase (when bonds form), decrease (when
bonds break), or remain the same, i.e., the situation when
either bonds break as well as form simultaneously or bonds
neither form nor break concurrently. We define a parameter
s that represents the change in the number of bonds in the
system in a one-time step. The parameter s is positive or
negative depending on the increment or decrement in the
number of bonds, whereas the parameter s takes the value
0 for no change in the total bonds in the system. For each
increment (decrement) in the total quantity of bonds in a
time step, the original rates of the TASEP-LK model get
multiplied (divided) by a factor of g (r). Figure 1 shows the
modified hopping rates of the three subprocesses, under the
interactions, which can be summarized as follows:

(1) Insubprocess (i), the entrance and the exit rates depend
on the occupancy state of sites 2 and N — 1, respectively. A
particle enters the empty site 1 with a rate « if site 2 is empty,
otherwise with a rate go, since, in this case, the number of
bonds increases by 1. A particle at site N leaves with a rate
B if site N — 1 is empty, otherwise the rate of leaving is rp,
which implies the system loses one bond [see Figs. 2(b) and
2(c)].

(2) In subprocess (ii), the hopping rate of a particle at sites
i=2,3,..., N —2, given that site i + 1 is empty, depends
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FIG. 2. The modified rules of interactive TASEP-LK system in
terms of the increase and decrease in the number of bonds (s) in
the system. The parameter s is positive or negative depending on the
increment or decrement in the number of bonds. The parameter s
takes the value O for no change in the number of bonds in the system.
For each increment (decrement), the original rates of TASEP-LK
model get multiplied by a factor g (7).

upon the occupancy state of sites i — 1 and i + 2. For a
particle at site i = 1 (i = N — 1), however, the rate depends
only on the site 3 (N — 2). In the situation when the site
i — 1 is empty but site i + 2 is occupied, the rate is g. Here
the number of bonds in the system increases by one. But in
the case when the site i — 1 is occupied while the site i + 2
is empty, the hopping rate is r, since, in this scenario, the
number of bonds in the system decreases by one. In the other
two cases, when both sites i — 1 and i + 2 are either empty
simultaneously or occupied concurrently, the hopping rate is
1 because of no change in the number of bonds in the system
[see Fig. 2(a)].

(3) In subprocess (iii), a particle’s attachment and de-
tachment rates for a bulk site i depend on the occupancy
state of its nearest-neighboring sites. The rate of attachment
(detachment) is w, (w;) when both the sites i — 1 and i + 1
are empty. In the case when either site i — 1 or site i + 1 is
occupied, the attachment and detachment rate is, respectively,
qw, and rw,. In the last situation, when both the left and right
neighboring sites of the ith site are occupied, the attachment
(detachment) rate becomes ¢*w, (r’w,) [see Figs. 2(d) and
2(e)].

Thus, under the effect of interactions, the hopping rate
of any subprocess of an original TASEP-LK system gets
multiplied by a factor ¢°, if the process leads to an increment
of s number of bonds, while the rate gets multiplied by r~*,
if the process causes a total of s number of bond breakings in
the system (see Fig. 2).

Clearly, in the absence of interactions (E = (), the modi-
fied rates reduce to the original rates of three subprocesses of
TASEP with a LK system.

A. Master equations

The temporal evolution of the average site occupation
number (7;) for any site i (1 < i < N) consists of three terms:
the inflow term J;_;; from site i — 1 to site i, the drain term
Ji.i+1 from site i to site (i 4+ 1), and the respective, stochastic
attachment S; 4 and detachment S; p term, to and from the site
i. The master equation for the probability of the occupied ith
site, P(t; = 1), for 1 <i < N, is thus read as

d(t;)

dt
According to the system’s dynamics, the particle current
from site i to site i + 1 (2 < i < N — 2), depending on the

occupancy of nearest- and next-nearest-neighboring sites, is
given as

—Jiix1+Sia—Sip. ()

i—1,i

Jiivi = (TianufinTipe) +q(Gi1tiTit1Tig)

+r(tio1 Tt i) (o nticitis), Q)
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where ¥; = 1 — ;. The particle current for the entrance at site
i = 1is given as

Jenr = a(T1%2) + qa (T 12). 4

Further, the particle current from site 1 to the empty site 2
depending on the occupancy state of site 3 is given as

Jip ={(t1HB) +q{n1H13). )

Similarly, a particle’s flow to the last site depending on the
occupancy of the last three sites is written as

In-in = (Iv—2tv—1Tn) + 7 (tv2Tv—1TN), (6)

and the exit current from the lattice depending on the last two
sites of the lattice is read as

Jexit = B(En—1Tn) + rB{Tn-1TN). @)

Similarly, the attachment and detachment terms for any bulk
sitei (2 < i < N — 1), which depend on the occupancy states
of the left and the right nearest-neighboring sites, are stated as

~ -~ 2 ~
Sia =wa(Ti1TTip1) + ¢ wa(Ti-1 TiTiv1)

+qw,((Ti15tip1) (T TiTiv) ®)
and

- - 2
Si.p =wa({Ti—1TiTip1) +r wi{ti—1TiTiy1)

+rog((Ti-1 %) + (G Ttia)- 9

For simplicity, we have not considered the attachment and
detachment at the first and last sites. Equations (3)—(8) are
further simplified in Appendix A. By substituting Eqs. (A1)—
(A7) in Eq. (2), we can obtain the master equations for the
single-site probability p; regarding one-, two-, three-, and
four-site joint probabilities.

J

III. SIMPLE MEAN-FIELD APPROXIMATION
AND CONTINUUM LIMIT

The computation of time evolution of the probability of av-
erage occupancy of the ith site, (t;(¢)), and the particle current
requires the determination of one-, two-, three-, and four-point
correlators. We first consider the SMF approximation, which
ignores the particles’ spatial correlations and replaces the
higher order correlators with the product of individual average
site occupations:,

(titj) =~ (1) (1}),
(TitjT) ~ (T;)(t;) (™), and (10
(titjmr) ~ (1) {r;) (w) (u).

Defining p; = (tr;) and utilizing the SMF approximation, the
expressions of the particle current reduce to

Jiiv1 = pi(l — pir )1 + (g — Dpipa(1 — pi—1)
+ (@ = Dpi—1(1 — piz2)], (11)

Jip=p1(1 = p)[1+ (g — Dps], (12)
In—inv = pn-1(1 — pW)[1 + (r — Dpy-2], (13)
Jenr = (1 — p)[1 + (g — Dp2], and (14)

Jexit = Bon[1 + (r — Dpy—1]. 15)

In the absence of interactions, g = r = 1, the above expres-
sions of the particle current reduce to the corresponding terms
of the simple TASEP-LK system [15].

Similarly, under the SMF approximation, the attachment
and detachment terms are simplified to

Sia=w,(1 = p)[1+(qg—Dp;1]ll + (g —Dpiy1], (16)

Sip = wapi[1 + (@ — Dpi—1][1 + (r — Dpig1]. o))

When there is no interaction (E = 0), the above equations,
respectively, reduce to S; 4 = w,(1 — p;) and S; p = wap;
[15].

Utilizing Egs. (11)—(17), the master equation [Eq. (2)] of
the average density in the steady state becomes

Pi-1(1 = p)[1 + (g — Dpi1(1 — pi2) + (r — Dpj2(1 — pix1)] — pi(1 — pix D1 + (g — Dpir2(1 — pi—1)
+ (= Dpio1(1 = piz2)] + 0, (1 — p)[1 + (g — Dpi—11[1 + (g — Dpit1]l — wapill + (r — Dpi11[1 + (r — Dpiy1]1 =0,

(18)
for the bulk sites. In the case of the first and the last sites, we get
a(l —p)[l+ (g = Dp2] = pi(1 = p2)[1 + (g = Dp3] =0 (19)
and
pn—1(1 = pn)[1 + (r = Dpn—2] = Bon[1 + (r = D)pny—1]1 =0, (20

respectively. To obtain a continuum description of Egs. (18)—
(20) in the hydrodynamic limit N — oo, we coarse grain the
discrete lattice, assuming the lattice length to be equal to 1,

(

with lattice constant € = 1/N, and rescale the time variable as
t =t/N. For large N, we have the quasicontinuous rescaled
position variable x = i€, 0 < x < 1. To ensure the competing
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interplay between the conserving and nonconserving dynam-
ics, we rescale the attachment and detachment rates in such
a way that the kinetic rates decrease simultaneously with an
increase in the system size:

Qs =wyN, Q4= wyN. (21)

Performing a Taylor expansion of the average density p(x) =

pi in powers of €,
p(x £n€) = p(x) £nedp(x) + 3(ne)*d;p(x) + O(e),

(22)

in Eq. (18), one can easily obtain the equation of average

density as a function of ¢’ and quasicontinuous space variable

x, described as

9  €d*p

— = —— 4+ Q,(1 -l - Dp)?
5 =5 3x2 8p8x+ (I =p)1+ (g = Dpl 23)

— Qupll + (r — DpP,

J=pl=p)1+(@q—-Dp(l—p)+@F—-1p( -
p)] defines the bulk particle current. Similarly, Egs. (19) and

(20) are, respectively, translated to the following boundary
conditions:

where

p(0) = a, p(1)=1-B. 24
In the steady state and inviscid limit of € — 0, the second-
order nonlinear equation [Eq. (23)] reduces to the following
first-order nonlinear differential equation:
Ip _ R -pIMl+(q— Dp)> — Qapll + (r — Dp]?
dx (1 =2p)* +2(g +r)p(l — p)(1 —2p)

’

(25)

with the boundary conditions given by Eq. (24). This bound-
ary value problem is over-determined due to the presence of
two boundary conditions. However, the solutions of the equa-
tion can be obtained by satisfying only one of the boundary
conditions at a time. The solution obeying the left boundary
condition is denoted as p,, while the one satisfying the
right boundary condition is represented as pg. To obtain the
constant Langmuir isotherm solution (p;), we equate Eq. (25)
to 0, which yields the following third-order equation:

P’ [K(qg — 1+ (r — D)1= p*[K(qg — 1)(g —3)
—2(r— 1] —p[KQ2q—-3)—11-K =0, (26)

where K = g— represents the binding constant. According to

Cardano’s forrdnula, we find that the above third-order equation
always has only one real root belonging to (0,1) for any
particular value of K and E. We denote the real root as the
Langmuir isotherm (p;), which is independent of both the left
and the right boundaries but depends on the interaction energy
E and the binding constant K. In the absence of interactions,
the above equation gives the Langmuir isotherm density, p; =
KLH, for the simple TASEP-LK system [14]. For 0 < € <
1, the full density profile in the range 0 < x < 1, i.e., the
complete steady-state solution of Eq. (23), is constructed from
the possible combination of the three solutions [15,34]

Pu for 0 <x < x4
px)=qpm for x, <x<xg (27)
pp for xg<x <1

The corresponding position x, (xg) separating p, (0g) from
o1 is obtained by matching the corresponding currents J(p):

J(p) =[p(1 = Pl = p)*+p* + (g +r)p(1 — p)]. (28)

For x,, the current, J, (x4 ), corresponding to the left solution
Po 18 matched with the Langmuir current J; = J(p;), while
the position xg is obtained by equating the right solution
current Jg(xg) with the Langmuir current J;.

In general, it happens that the left solution (p,) does not
continuously match the right solution (pg). For the limit € —
0%, the crossover interval (xg, xp) decreases in width and
leads to a discontinuity of the average density profile at some
position x,,. In this case, the density profile is given as

0<x<xy
X <x < 1.

oo for

pp  for (29)

p(x) = {
Here the Langmuir density p; is not a part of the density pro-
file, and x,, is obtained by equating the current corresponding
to both the solutions at x,,: Jy (xy,) = Jg(xy).

A. Shortcomings of the SMF approximation

We now highlight the major shortcomings of the SMF
approximation and its continuum limit in the analyses of the
steady-state properties of the interactive TASEP-LK system.
First, we observe that the phase diagrams as well as the
density and the current profiles in every phase of a phase di-
agram obtained from the continuum SMF approximation [see
Figs. 3(b), 3(c), 5, 6, 8, and 9] deviate significantly from the
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FIG. 3. (Left) (a) Maximal particle current Jy,¢ as a function of
interaction energy E in the maximal current phase. The maximal
particle current exists in the MC phase of every phase diagram
for the interaction energy E and its corresponding critical binding
constant K* computed in Sec. V B. Moreover, the maximal current
occurs for weak repulsion, which matches with the strength of the
interactive TASEP system without LK. (Right) Current profile in the
Meissner phase for 2, = 0.3, K =1 and interaction strength (b)
E =—-0.6kgT; (c) E=0.6kgT. For simulations, x =1, 8 =1 is
utilized. Symbols are the results of Monte Carlo simulations with a
lattice site of 1000 sites, averaged over 5 x 10° simulations. Solid
and dashed lines, respectively, represent the correlated cluster mean-
field and SMF results.
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FIG. 4. Phase diagrams for interactive TASEP with mutually
interactive Langmuir kinetics for 2 =0.3, K =1 and (a) E =
0.0kgT; (b) E=03kgT (c) E=0.6kgT; (d) E=1.6kgT;
(e)E = —0.2 kgT; (f) E=—1.6kgT. Solid and dashed lines, re-
spectively, indicate the correlated cluster mean-field and SMF re-
sults. Symbols represent the simulation results. For £ = 0.0 kg T,
the correlated cluster mean-field results match exactly with the SMF
and simulation results [15].

Monte Carlo simulations, for any value of binding constant,
K, and interaction strength, E. Moreover, the deviations in
the results increase with the rise in the strength E, leading to
not only qualitative changes but also quantitative changes in
the phase diagram. For instance, in Fig. 4(c), the continuum
SMF theory predicts a low-density phase near the upper left
quadrant, whereas the phase does not exist according to the
simulations.

Second, the particle maximal current phase exists for every
interaction energy E only at a critical binding constant K *(E)
(to be discussed in Sec. V B). In the maximal current phase,
the SMF theory approximates the particle current as Jyax =
1/8 + ((¢ +r)/16), which is obtained by substituting the
critical density pmax = 1/2 in the bulk current J. Figure 3(a)
shows that the maximal particle current, Jy.x, obtained from
the SMF theory, increases without bound for |E| > 1, which
is neither realistic nor agrees with simulations. In the presence
of large attractive interactions, the particles group together to
form large clusters, which hinder their movement, while for
infinite repulsions, they behave as noninteracting dimers with
a finite nonzero particle current [8]. Note that the unbounded
maximal current for the conserved system continues to prevail

in the considered nonconserved system [17]. Thus, the above
drawbacks point out the failure of the SMF approximation and
its continuum limit in computing the steady-state properties
of the TASEP-LK system under weak as well as strong
interactions. To deal with the nearest-neighbor interactions
in the TASEP-LK system, we define an approach in the next
section that can handle correlations and can overcome all the
pitfalls of the SMF approximation.

IV. CORRELATED CLUSTER MEAN-FIELD THEORY

The theoretical examination of the TASEP-LK system
in the presence of mutual interactions requires an efficient
analytical approach that takes into account the correlations
to some extent and works well for nonconserving systems.
The existing theoretical studies such as cluster mean-field
theory [27,29], modified cluster mean-field theory [28], time-
density functional approach [23], etc., are efficient only for the
conserved systems. These theories assume that any observable
is uniform and independent of the position on the lattice. Since
the TASEP along with the LK process produces nonuniform,
nonlinear density profiles [34,35] as well as localized shocks
in the density profiles, these theories cannot be directly uti-
lized for the interacting TASEP-LK system. It indicates that
the dealing of the interactive TASEP-LK system requires an
efficient, generalized approach, which we call a correlated
cluster mean-field (CCMF) approach, that successfully han-
dles the nearest-neighbor correlations in the system.

The n-CCMF approach, in general, exactly considers the
correlations between n consecutive sites in the state (say)
{oi, 0741, ..., Oi+n—1}, Where o; represents the particle or hole
occupation number of the ith site. We consider the case of
n =2, in which the CCMF approach exactly considers the
correlations between two nearest-neighboring sites. Taking
into account the particle-hole symmetry, a pair of nearest-
neighboring sites can exist in any of the four possible states:
{1, 1}, {1, 0}, {0, 1}, and {0, 0}. For simplification, we denote
the two-point nearest-neighbor correlator (7;7;41) or the prob-
ability when both sites i and i 4 1 are occupied, i.e., P(1; =
1, t;4+1 = 1), by f;. Then, using the Kolmogorov consistency
conditions, the remaining two-site cluster probabilities can be
obtained as follows:

(Tl =7)) = pi — fi
(1 = )Ti41) = piy1 — fi, and (30)
(A=t)A =130)) =1—p; — piy1 + fi.

The correlator (o;0;,10:;42) between the three consecutive
sites 7, i + 1, and i 4+ 2 in their respective occupation states
0;, Oi+1, and 0,47, is approximated as

(0i07110i12) X (0;0;11){0i+10i42), 31

which is further factorized in terms of a one- and two-point
correlator as [36-38]
(0i0i4+1)(0i+10i+2)
(0i0i410142) = —— —, (32)
(0it1)

provided the term in the denominator is nonzero. The above
equation can be understood as follows. For a cluster of size
3, Eq. (32) exactly considers the correlations between the
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clusters made up of two nearest-neighboring sites, i.e., for a
cluster of sites i, i + 1, and a cluster of sites i + 1, i + 2.
Since it involves the double consideration of the probability
of the occupancy of site i + 1, the approximation must be
corrected with the division of the probability of the occupancy
of site i 4+ 1, which yields Eq. (32) [36-38]. In general, the
correlations between n consecutive sites are factorized in
terms of one- and two-point correlators as

(01020} = (0102)(0203) - - - <Ovn710n>7 (33)

(02)(03) - - - (On—1)

provided the terms in the denominator are nonzero [36-38].
Similarly, here, for a cluster of size n, only the probabili-
ties between the cluster made up of two nearest-neighboring
sites are considered exactly, i.e., between sites j and j + 1,
where 1 < j < n— 1. The probabilities of the bulk sites
{2,3,...,n — 1}, which are included twice in the numerator,
are divided to correct the approximation. Thus, from the
application of Eq. (33), any higher order correlator can be
written as a function of average density p; and the average
two-point correlator f;, corresponding to the site i.

Basically the CCMF approach works in two steps. First, the
higher order correlators, i.e., three- and more point nearest-
neighbor correlators, appearing in the time evolution of the
average density p, and two-point correlator f are reduced
regarding one- and two-point correlators by using the relations
(30)—(33). Second, the density, p, and the two-point correlator,
f, are numerically obtained from a pair of coupled second-
order nonlinear ordinary differential equations in the two
unknowns p and f in respect to the boundary conditions.
The density and the two-point correlator function can then be
utilized to obtain the system’s other properties.

We now move to step 1 and first write the master equation
governing the time evolution of average density p. However,
the master equation for p remains intact as Eq. (2), but the
gain terms (J;_; ; and S; ) and the loss terms (J; ;4 and S; p),
given by Egs. (3)-(9), reduce to functions of only one- and
two-point correlators, by using the correlated cluster mean-
field approximation [Egs. (30)—(33)].

The simplified form of the bulk particle current J;; 41,
given by Eq. (3), under the CCMF approximation is written
as

Jiiv1=(oi — fi) +(r —1)fi1 (1 - %)

n |:(Pi — fi)(pita — fi+1):|
1 — piq

x|:(q—1)+—(2_q_'r)fili|. (34)

l

In the absence of interactions, ¢ = r = 1, the above equa-
tion reduces to J;;y1 = p; — f;, which matches the case of
TASEP without interactions [29,39]. We claim that Eq. (34)
overcomes the major drawback of the SMF approximation
in producing the unbounded current for large interactions. To
prove our claim, we rewrite Eq. (34), assuming the current to
be uniform for sites far from the boundaries, as follows:

J=(p—f)+(r—1)f<1—£>

_ -
+[(/o f) M(q_lH 2—gqg r)f}_ (35)
l—p P

The uniform two-site cluster probability f = P(1, 1) can be
determined by solving its steady-state master equation, which
yields the relation g(p — f)*> =rf(1 —2p + f), and further
gives

F—A/rlr —r — 3
1[op + IR i gy 1
f= (36)
0> if g=r=1.

Utilizing Eq. (36) in Eq. (35), we obtain the particle current
as a function of interaction energy E and density p. The plot
of the maximal values of particle current corresponding to
various values of interaction energy E agrees very well with
the Monte Carlo simulations [see Fig. 3(a)].

For the special case of E — —oo, where particles behave
as noninteracting dimers, we obtain f — 0 and J — pé%ﬁ?
[41]. For the case when E — oo, we get f — pand J — O,
which is well justified with the physical explanation given in
Sec. IIT A. Thus, the proposed CCMF approach overcomes the
drawback of an unbounded particle current with respect to the
interaction energy E.

We now write the simplified expressions of the inflow
and outflow current for sites 1 and N, respectively, using

Egs. (30)—(33) in Egs. (4)—(7) as follows:

Jenw = (1 — p1) + (g — D)(p2 — f1), (37)

Ji2 = (p1 —fn)[1+(q—1)pf;fz], (38)
— P2

N—1

In-tn = (ov—1 — fv-1) + (A = r)f;v_2<£N_1 — 1),
(39)

Jexit = Bloy + (r — 1) fn—1). (40)

For E — 0, we obtain Jopw — (1 — p1) and Jeic — Bown
[15]. When E — —oo, we acquire Jepy — (1l — o1 — 02)
and Jeir — Bon [40]. The case of infinite attractions pro-
duces Jonr, Jexit — 0.

TABLE I. Gain term, Fj,, in the master equation for the two-point correlator function f;.

Site F, F;, (CCMF approximation)
i=1 ga((l — 7)) qa(p2 — f1)

i=2 gt (1 = )Tis) g[ e
3<i<N-1 q{ti-1(1 = t)Tip) + (1 — @) T2t (1 — T)Tig1) [+ —q)ﬁ%z][w]

1—p;
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In a similar way, the source and sink terms [Eqgs. (8) and
(9)] are simplified using the CCMF theory [Egs. (30)—(32)],

as follows: =
=i
Sia= wa((l —pi)+ (g — 1){(,0i+l — f)+ (pic1 — fic1) Q3 LAZ
=S B
— D(piy1 — fi 2] & L=
><|:1+(q )(Dit1 f)]}>, @n 5| = s 2
1 — p; .5 = 17
Pi g | | > é
r—1 i = S ~ -
s,-,D=wd<pi+<r—1){ﬁ+ﬁ_1[1+g]}), =T et
Li <3 & + I=
S
(42) S| T2
&) = - =
where 1 <i < N. Clearly, E — 0, yields S; 4 — w,(1 — p;) 9 59 '2
and S; p — wyp; [15]. When E — —oo0, we get f; — 0 and, R é?‘:'ﬂ:gf}
thus, S; 4 — Qa(1=pi- P:)(l Pi=Pi+1) , Si.p — wap; [41]. Since i” i_gl‘é:
there is no attachment and detachment at the first and last sites, Cj: =

we have S; 4 = S;p =0,fori =1and N.

Substituting Eqgs. (34) and (37)—(42) in Eq. (2), one can
obtain the temporal evolution of density (p;) at any site i as a
nonlinear combination of correlation function f and density
function p corresponding to the sites i — 1,7, i + 1, and
i +2.We now write the master equation governing the time
evolution of the two-point correlator f; = (t;7;+1), depending
on the neighboring sites, as follows:

d(TiTiy1)

T = Fi,in - E,om + Fi,A - Fi,Da (43)
where F; i, and F; oy, respectively, denote the gain and the loss
terms to the joint probability of the simultaneous occupation
of the ith and (i + 1)-th sites arisen from the particle hopping
with exclusion. F; 4 and F; p, respectively, represent the gain
and the loss terms for (7;7;11), due to the attachment and the
detachment processes. The gain terms, F; iy, F; 4, and loss
terms, F;ouw, Fi p, are, respectively, given in Tables I and
IT and Tables III and IV. Column 2 of Tables I and II and
Tables III and IV represents the gain and the loss terms as
a linear combination of three- and four-point correlators, re-
spectively, whereas column 3 of Tables I and II and Tables III
and IV gives the corresponding terms as a function of one-
and two-point correlator functions, respectively, obtained by
applying Eqgs. (30)—(33). Substituting F;in, Fjou, Fia, and
F; p from the third column of Tables I-IV, into Eq. (43), we
can obtain the temporal evolution of the two-point correlator
function f; as a nonlinear combination of density and correla-
tor function.

We now move to step 2. To obtain the solution of the aver-
age density p and the correlator function f, the discrete form
of the master equations is first converted into their continuum
form. For this, we coarse-grain the discrete lattice with lattice
constant € = 1/N — 0 and rescale the time variable as ¢’ =
t/N. For large systems N >> 1 and € < 1, a quasicontinuous
variable x = i€ is introduced which denotes the position of
the particles on the lattice. To observe the competing interplay
between the boundary and bulk dynamics, we also rescale °|'
the attachment and detachment rates as in Eq. (23). Taylor’s
expansion of average two-point correlator function f(x) = f; v/
in the leading powers of € is given as .

fx£ne) = f(x) £ned, f(x)+ 1(ne)*d} f(x) + O(e).
(44)

Fa

qoal{ti(1 = 2)(1 = i3)) + g{T1(1 — ©2)73)]
qo.[{((1 = 7)) = )Ti41) + g{tio1 (1 — 1) Ti11)]
+ g [(ti(1 — 1i41)(A — 712)) + q{ti(1 — T4 )Tis2)]

TABLE II. Gain term, Fy, in the master equation for the two-point correlator function f;.
qoa[{(1 —tv2)(1 — tv-)Ty) + g{tn—2(l — Tv-1)TN)]

1
i
N -1

Site
i:
2<
1 =
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TABLE III. Loss term F,, in the master equation for the two-point correlator function f;.

Site Fou Fou (CCM Fapproximation)

I<i<N-2 (Tt (= T+ (L= (@t (L= t2)Tis) et [ 4 Gopea )]
=N-2 rtnatnoa (1 —Ty)) Hn=(en=) —fy=))
=N-1 rp{Tn-1Tn) rBfn-1

Utilizing the above equation and Taylor’s series expansion of ~ and

the average dens'lty from Eq. (22) in the corre'tlated cluster —£2\ p(x, 1) fop—f\of(x, 1)

mean-field equations for the average bulk density p and the 5 p +1 =+ 1=, P

bulk correlator function f, we obtain the following continuum P * P - *

form in the steady state: €d’p

=29 2+2§2a(p f)=2Qf — N(p* = f). (48)

[gl gzi| g—ﬁ €d%p [1] B |:Si,A —Sip— Ngoi| 45)
h] h2 % 28)62 1 - Fi,A_Fi,D_NhO ’

where the functions gx(p, f) and hi(p, f),fork =0, 1,2 are
given in Table V and Table VI, respectively. In the thermo-
dynamic limit, the functions gy, 79 — 0 and thus right-hand
side of Eq. (45) converge to the pure source and sink terms.
The continuum steady-state master equations of p and f for
the boundary sites are given in Appendix B. The pair of
coupled equations, Egs. (48) and (B2)—(B4), can, respectively,
be solved to provide the left and right boundary conditions.
Further, we discuss the constant solution independent of the

left and the right boundary conditions. The zeros of the
source-sink term, S; 4 — S; p = 0, given by the equation

p+(r—1)f|:2+¥}

—K{l—p+2(q—1)(p—f)

2
+(q— 1)2[%” =0, (46)

yield the Langmuir isotherm solution p = p;, where f is
given by Eq. (36). The solution p; depends on the interaction
energy E and the binding constant K.

A. Special cases

(a) E = 0: When there are no interactions, i.e., E = 0, the
steady-state master equation of the density and the correlator
function from Eq. (45), respectively, reduce to

€d’p
3x,0—3f—§8—+9(1—,0)—9d,0 (47)

The left and right boundary conditions for p and f given
in Appendix B reduce to p(0) =«, p(1)=1—- 8, f(0) =
a?, and f(1) = (1 — B)%. In the thermodynamic limit, the
coefficient of N in Eq. (48) must approach 0, thus yielding
the relation f = p2. Utilizing the relation in Eq. (47), we get

1
o, @p = Dip =K1 =p)=p, (49)
d

which is the the corresponding equation of TASEP-LK system
[15].

(b) E = —oo: When the interactions are highly repulsive,
i.e., E — —o0, the two-point correlator function, f, vanishes
and the steady-state master equation for the average density
obtained from the continuum-correlated cluster mean-field
approximation in the limit € — 0 becomes

L [pa - 2p)} _ (=27

Qp L 1-p I=p)

which matches exactly with the corresponding equation of
the noninteracting TASEP-LK system of dimers [41]. The
left boundary condition gives p(0) = /(1 + «) and the right
boundary condition gives py_; = Bpn, which again matches
with the corresponding equations of noninteracting TASEP
of dimers with LK [41]. Unlike the special cases, E =0
and E — —oo, the coupled system of second-order nonlin-
ear differential equations, Eq. (45), respecting the left and
right boundary conditions [obtained from solving Eqgs. (48)
and (B4)], for a given finite nonzero interaction energy, can
not be solved analytically. They are required to be solved
numerically for obtaining the density p(x) and the two-point
correlator f(x). The steady-state solution, p(x), is classified
as low-density, high-density or a shock, depending on whether
the boundary layer confines to the extreme right, to the
extreme left, or between positions 0 < x < 1 of the lattice
length. The steady-state solution will be close to Langmuir

TABLE IV. Loss term, Fp, in the master equation for the two-point correlator function f;.

Site F[)

Fp (CCM Fapproximation)

ros((t1n) + r — D{t11273))
ray[2(titiyr) + r — DETo1 6 Ti) + (Tt Ti2)]

rog{ty-1Tn) + (r — D(ty_2tyv-17a)]

rogfill +(r = HE]
ra)df,[2+(r— 1)(f’ L4 /j)’il)]
rogfy-1[1+ @ —

)fN 2]

PN—1
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TABLE V. Terms in the continuum limit of the steady-state master equation for p; obtained under the CCMF approximation.

Site go(p, ) gi(p, f) &0, )
_ fo=1) o [@=g=r)p=1) == f=p)f(q+r=D+p(=) | _ S =p)lr =1+ f(g+r=2)+pB—g—2r)]
=2 » {a-n-[ —p A p(1—p) J-1 (=)
3<i<N-=-2 0 %
i=N_1 (f=pPLfR=q=r)+plg—D] Q-q=n)(f=pPf _ =D _ 4 3f2(q+r=2)— f12—p(13—6q)+r(1p=2)] _ plr—2+p(7=3g—3r)]
p(1—p) p*(1—p) p? p(1—p) p(1—p)

isotherm density p; if the solution satisfies neither the left nor
the right boundary conditions.

V. PHASE DIAGRAMS AND DENSITY PROFILES

We construct the phase diagrams, the density, the current,
and the correlation profiles of the interactive TASEP-LK
system for different values of interaction strength and binding
constant, using the continuum-correlated cluster mean-field
method and further compare them with the corresponding
results from the continuum SMF approximation. We also val-
idate the numerical results of the continuum CCMF approach
with Monte Carlo simulations for a system size L = 1000.
Similarly to the case of the simple TASEP-LK system, where
the system’s properties depend significantly on the binding
constant K, we now explore the steady-state properties by
splitting the discussion into two cases, based on the value of
the binding constant K.

A.K=1

In the absence of interactions, the phase diagram of simple
TASEP-LK system for 2, = Q; = Q consists of seven dif-
ferent phases, namely, low-density (LD), high-density (HD),
maximal current (MC), and four coexistence phases: LD-HD,
LD-MC, LD-MC-HD, and MC-HD [see Fig. 4(a). The con-
sideration of nearest-neighbor particle interactions in the sys-
tem completely changes the topology of the phase diagram.
The inset of the interactions whether repulsive or attractive
reduces the number of possible phases from seven to three
(see Fig. 4): LD, HD, and a shock (S) phase. In the presence of
interactions, the MC region of the simple TASEP-LK system
is replaced by either an HD phase, in the case of attractions,
or an LD phase, for the case of repulsions. The characteristics
of the HD and the LD phases, arrived at in the place of the
MC phase, are different from the general HD and LD phases,
where the density profiles, respectively, satisfy the right and
the left boundary conditions [15]. To distinguish such HD
and LD phases from the general HD and LD phases, we term
them to be the high-density Meissner (H D)) and low-density
Meissner (L Dys) phase, respectively, due to their similarity
with the Meissner phase found in the superconducting mate-
rials [15]. The particle density in the LDy, and H D), phases
is independent of both boundary conditions and is attracted to
the Langmuir isotherm density p; [see Eq. (47)]. For the case
of attractive interactions, we obtain p; > 0.5, and thus the MC
phase of the simple TASEP-LK system gets replaced by the
H D, phase, whereas for the repulsions, we get p; < 0.5, and
thus the L D, phase occupies the place of the MC phase. As
a consequence, the S phase for attractive interactions can be
any of the two coexistence phases, LD-HD and LD-H D,,,

while, for the repulsive interactions S phase can be either
LD-HD or LDy-HD. The particle density in the LD and
the HD phase is, respectively, given as p < p; and p > p.
All the phases in interactive systems with €, = Q, have the
same characteristics as the corresponding phases in the simple
TASEP-LK model but with 2, # 4 [14,15]. Similarly, the
phase boundaries are obtained by matching the corresponding
currents as in Ref. [15].

Figures 4(b)—4(d) and 4(e) and 4(f), respectively, show the
phase diagrams for different attractive and repulsive interac-
tion strength obtained from the continuum SMF, continuum
CCMF, and Monte Carlo simulations (MCSs). The results
obtained from the continuum CCMF approximation are in
good agreement with the simulation results, whereas the phase
boundaries obtained from the continuum SMF approximation
mismatch the computer simulations. These deviations become
more significant with an increase in the strength of inter-
actions. For instance, in Fig. 4(c) the SMF approximation
predicts an extra phase, namely, the LD phase, for smaller
values of o and larger values of 8, but the phase does not exist
according to the computer simulations and the continuum
CCMF theory. To further validate our results of the CCMF
theory with the simulations, we plot the density profiles for
different attractive and repulsive interaction strength, respec-
tively, in the first row of Figs. 5 and 6. It is clear from the
figures that the density profiles predicted from the CCMF
approach agree well with the simulations. Moreover, unlike
the case of no interactions, the density profiles for interactive
systems are not always the linear lines [15]. It is also verified
from the density profiles in Figs. 5(c) and 5(d) and 6(b) and
6(d) that, at certain parameters, the SMF and the CCMF
approach predict completely different phases. Moreover, in
the case when both theories predict the same phase, their cor-
responding density profiles deviate largely from each other;
see Figs. 5(a) and 5(b) and 6(a) and 6(e).

We now discuss how the variation in the interaction energy
affects the topology of the phase diagrams. The increment in
the attractive interaction strength progressively shrinks the LD
region near the § axis, and at a critical interaction strength, the
LD region collapses leading to a phase diagram with phases S,
HD, and H D)y; see Figs. 4(b)-4(d). A further increase in the
positive energy E leads to the vanishing of the shock phase at
some critical interaction strength, and HD and H D, phases
completely dominate the phase diagram. The paramountcy
of only HD phases for large attractive interactions is also
physically justified because attractive interactions favor the
clustering of particles, which leads to a high-density region.
Similarly, on decreasing E from 0, first, the HD phase shrinks,
the S phase gets a shift, and the LD region expands. Ulti-
mately, at some critical interaction strength, the HD phase
disappears, and the region gets replaced by an S phase; see
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Figs. 4(e) and 4(f). On further decreasing E, the S phase
shrinks and finally vanishes at some another critical interac-
tion strength. For £ < 0, only low-density phases prevail in a
phase diagram, which is also physically justified because the
repulsions cause the particles to fall apart from each other. To
further visualize how the interaction energy shifts the phases,
we plot the density profiles for fixed left and right reservoir
densities but different interaction energy in Figs. 7(a) and 7(b).
Clearly, for the attractive interactions, on increasing E, an LD
profile moves to an HD profile via a shock profile. Similarly,
in the case of repulsions, the density profile moves from HD
— S — LD, with the increase in the repulsive strength.

From a biological point of view, the nonexistence of the
MC phase for interactive TASEP-LK system in an ideal
situation K = 1, i.e., symmetric attachment and detachment
rates, implies that the motor proteins do not operate at the
maximal current conditions. Further, it also sheds information
that in traffic flow, the presence of interactions does not favor
the maximum flow of vehicles for K = 1.

rf _ qle=f)
P I—p

rf

ha(p, f)
3fA=r)p=f) | rf
+ P
q9(p—=1)
1
p(1=p)

p(l=p)

_rf
P
(f=pI3f(g=1)+p(2-39)]

Bfr—D+fl@—1)—2¢q—1D— /)l

p(l—p)

flo=1)

Bfr-D+f@—-1D—2(¢g—D@p—N-

flo=f)
p(1=p)

B. K #1

We now consider the case when the attachment and de-
tachment rates are asymmetric implying K # 1. Here the
maximum number of possible distinct phases can reach seven,
unlike the corresponding case of the simple TASEP-LK sys-
tem, where only three distinct phases can exist. The topology
of the phase diagram depends on the maximum (pp.x ) of the
current-density relation and the zeros (p;) of the source-sink
term [41]. In general, p; depends on the binding constant K
and the interaction energy E, while ppn, is only a function
of E. Equating pmax With p; yields a critical binding constant
K* depending only on E; see Fig. 8. The results from both
the theories match with the MCS for attractive and moderate
repulsions, whereas, for the case of strong repulsions, the
SMF results start deviating largely from the simulations. We
found that for the case of attractive interactions K* < 1, while
for the repulsions K* > 1, whereas K* = 1, in the case of
no interactions. Interestingly, the maximal-current phase in
a phase diagram exists only for K = K* [14,41]. The rea-
son for K* < 1 for attractive interactions can be understood
as follows. The attractive interactions lead to the clustering
of particles, thus increasing the density in the lattice. For
obtaining the maximal current at K*, the density should be
decreased to pmax = 0.5, which is possible if the attachment
rate is decreased or if the critical binding constant becomes
less than 1. Similarly, the repulsive interactions favor the low
density in the system, so to achieve the maximal current,
the attachment rate of particles must be increased, which is
possible with the increase in the binding constant K. Thus,
K* > 1, for the repulsions. Moreover, at K = K*, in total,
seven distinct phases, LD, HD, MC, LD-HD, LD-MC, LD-
MC-HD, and MC-HD, can exist in a phase diagram [see
Fig. 9(b)]. When K < K*, the isotherm density is less than the
maximal density. In this case, the lattice act as a repeller, and
the MC phase is replaced by a low-density Meissner (L Dyy)
phase. In this case, the possible phases, including the Meissner
phase, are the LD, LDy, HD, and S phase [see Fig. 9(d)].
For K > K*, the Langmuir isotherm density becomes larger
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TABLE VI. Terms in the continuum limit of the steady-state master equation for f; obtained under the CCMF approximation.
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FIG. 5. Average density (first row), current (second row), and the correlation (third row) profiles for 2, = 0.3, K =1 and (a) E =
1.6 kgT, « =0.02, B=0.6;(b) E=1.0ksT, 0 =0.1, B=04;(c) E=1.6kgTa=0.1, =0.8;(d) E=0.6 kT « =0.058 =0.7;
() E=1kgTa =0.3 8 =0.8. The dashed and solid lines, respectively, denote the continuum SMF and continuum-correlated cluster
mean-field results. Symbols are the results of Monte Carlo simulations with a lattice site of 1000 sites, averaged over 5 x 10° simulations.
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FIG. 6. Average density (first row), current (second row), and the correlation (third row) profiles for 2 = 0.3, K = 1, and repulsive
interaction strength (a) £ = —1.0kgT, « =04, B =0.08; (b) E = —1.6kgT, « = 0.1, B =0.18; (c) E = —1.0kgT, « =0.2,  =0.4;
(d) E=—1.6kgT « =0.8, p =0.2; () E = —3kpT, @« = 0.4, § = 0.6. The dashed and solid lines, respectively, denote the continuum
SMF and continuum-correlated cluster mean-field results. Symbols are the results of Monte Carlo simulations with a lattice site of 1000 sites,
averaged over 5 x 10° simulations.
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FIG. 7. Density profiles for K =1, Q24 = 0.3 and (a) attractive
interaction energy for a fixed @ = 0.1, 8 = 0.7; (b) repulsive inter-
action energy for a fixed « = 0.7, § = 0.16. Solid lines indicate the
correlated cluster mean-field results. Symbols represent the simula-
tion results.

than the maximal density, pm.x- Hence, the phase diagram can
consist of the LD, H Dy, HD, and S phase [see Fig. 9(c)].

The existence of the MC phase in the presence of interac-
tions for the case of asymmetric attachment and detachment
rates has physical consequences. In real situations of the
biological and vehicular transport processes, particles attach
and detach from the track with asymmetric rates. The existing
literature on the simple TASEP-LK system informs us that
the MC phase cannot exist for K # 1 [see Fig. 9(a) [14]].
However, in accordance with the experiments, which suggest
interactions among particles, our proposed theory predicts that
the interactions favor the maximal particle current conditions
for asymmetric LK rates.

VI. CURRENT AND CORRELATION

We now utilize the density and the two-point correlator ob-
tained from the solution of the system of equations [Eq. (45),
to calculate the particle current (34)] in the normalized lat-
tice [0,1]. The second row of Figs. 5 and 6, respectively,
show the current profiles for different attractive and repul-
sive interaction strength. It is clear from the figures that the

25
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10f

-4 -2 0 2 4

E/kgT

FIG. 8. Critical binding constant (K*) as a function of interac-
tion energy E. Symbols are the results of Monte Carlo simulations
with a lattice site of 1000 sites, averaged over 5 x 10° simulations.
Dashed and solid lines, respectively, represent the SMF and corre-
lated cluster mean-field results.
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FIG. 9. Phase diagrams for interactive TASEP with mutu-
ally interactive Langmuir kinetics for Q; =0.1 and (a) E =
0.0kpT, K =2.7182; E=—1.0 K3T and (b) K* =2.7182; (c)
K=4> K" (d) K =15 < K*. Solid and dashed lines, respec-
tively, indicate the correlated cluster mean-field and SMF results.
Symbols represent the simulation results.

particle current obtained from the continuum CCMF approach
matches well with the simulations, while the SMF approach
either underestimates or overestimates the particle current.
To measure the impact of correlations into the system, we
consider a two-point correlation formula

Ci = (TiTig1) — PiPi+1 = fi — PiPi+1, (5D

where i = 1,2,..., N — 1. Clearly, under the SMF approxi-
mation f; = p;pi+1, implying C = 0, for any value of inter-
action energy. However, in an interactive system, the correla-
tions are present and thus f; # p; p;+1. The CCMF approach
takes into account the correlations, and under the approach,
we obtain C # 0 in the presence of interactions (see the third
row of Figs. 5 and 6). The sign of the function C depends on
the nature of interaction energy E. For the case of attractive
interactions, where particles tend to bind together, a particle’s
occupancy at a site depends highly on its neighboring sites,
and thus, in this case, one expects C > 0. However, in the
case of repulsions, there is less probability for two particles
to be neighbor of each other, and thus the correlation must
be negative. The above physical intuition on the sign of
function C is also reflected and validated by the correlation
profiles obtained numerically from the CCMF approach and
the computer simulations. It is clear from the third row of
Figs. 5 and 6, respectively, that C > 0 for £ > 0, while C <
0 for E < 0. Unlike the bulk conserved interactive TASEP
system, the correlation profiles, here, are not always the
constant and the straight lines [28,29]. Moreover, we found
that the correlation function reaches its maximum value at the
domain wall positions. The little discrepancies in the results
of our proposed approach and the simulations are due to
the consideration of only nearest-neighbor correlations by the
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FIG. 10. Average density profiles computed by MCS (sym-
bols), SMF (dashed lines), and correlated cluster mean-field (solid
lines) for K = 3 and for different detachment rates with (a) E =
0.6 kgT, « =0.1, and B =0.6 (b) E=—1.0KzT, « = 0.4, and
B =0.1.

approach and the finite-size effect, which we discuss in the
next section.

VII. EFFECT OF THE LK RATES AND THE FINITE
SYSTEM SIZE

We now discuss the effect of varying the LK rates on the
phase boundaries of the interactive system. We exemplify the
results by fixing the binding constant K = 3. Figures 10(a)
and 10(b) show the density profiles for different values of
kinetic rates and interaction strength. In the case of attractive
interactions, on increasing €24, an LD region first shifts to an
S phase, and on further increase in €24, the phase changes
to an HD region; see Fig. 10(a). Similarly, for the case of
repulsive interactions, increasing 2, from O to larger values
shifts the density profile from HD — S — LD; see Fig. 10(b).
In the figure, the results from the CCMF approximation are in
good agreement with MCS even for all ranges of kinetic rates.
When the kinetic rates approach 0, the density profiles match
with the corresponding profiles of interactive TASEP system,;
while for large kinetic rates, the bulk density approaches to the
equilibrium density of the stochastic attachment-detachment
process. Further, by comparing the results of Fig. 10 with
Fig. 7, it is concluded that the effect of increasing 2; with
a fixed energy E has the same consequences on the density

*x L =100, MCS
0.8} L =500, MCS

= L = 1000, MCS
0.6+ ¢ L =5000, MCS
— L = 1000, CCMF
0.4}

0.2}

0O 02 04 06 08 1

X

FIG. 11. Effect of system size on the shock profile for £ =
—1.0kgT, « =04, $=0.08, K =1, 2, =0.3.

profiles as with increasing E from 0 or decreasing E from 0,
with a fixed 4.

We also observe the effect of the system size on the
position of the domain wall as obtained from the Monte Carlo
simulations. It is clear from Fig. 11 that the sharpness in the
steep rise of the shock increases as one increases the number
of lattice sites, and it also justifies that our chosen system
size L = 1000 is appropriate enough to study the interactive
TASEP-LK system.

VIII. SUMMARY AND DISCUSSIONS

To summarize, we have considered the nearest-neighbor
interactions in a generic model for nonconserving driven
diffusive systems. The interactions are encountered in a ther-
modynamically consistent way that affects the dynamical
rules as well as hopping rates of both the TASEP and the
LK process of the simple TASEP-LK system. Our model
is more general and realist8ic than the existing models for
interactions in the TASEP-LK system, which considered the
nearest-neighbor interactions either only in the TASEP or only
in the LK process. We have first analyzed the system with
SMF approximation and have shown that its estimation for the
maximal particle current, phase diagrams, density, and current
profiles deviate largely from the simulations. To overcome
the drawbacks of SMF, we proposed an approach, which we
call the correlated cluster mean-field theory (CCMF), that
exactly considers the correlations between clusters of size
two and approximates the correlation between clusters of
size greater than rwo. Under the approximation, the particle
current can be written as a function of density and a two-point
correlator function defining the probability of two consecutive
occupied sites. In the continuum limit, the master equations
for the density and the two-point correlator reduce to a
coupled nonlinear second-order partial differential equation
with time and space as the continuous variable. We have
computed the steady-state properties such as phase diagrams,
density, current, and correlation profiles for different inter-
action strength, kinetic rates, and binding constant K using
the CCMF approach and found them to be in very well
agreement with the Monte Carlo simulations. Correlations are
found to be negative for repulsive interactions, while they are
always positive for attractive interactions. Moreover, in the
vicinity of shock positions, the correlations are strongest. We
have also analyzed the effect of different kinetic rates on the
phase boundaries using the CCMF approach and the Monte
Carlo simulations. As expected, for 2 — 0, the results reduce
to the interactive TASEP system without LK, and similarly
for larger €2, the particle density approaches the Langmuir
isotherm density. We have also examined the effect of the
system size on the density profiles. The results of the CCMF
approximation agree well with the Monte Carlo simulations.

Interestingly, we found that unlike the simple TASEP-LK
model, in the case of symmetric attachment and detachment
rates, the maximal current (MC) phase does not exist in
the presence of interactions. However, for the realistic case
when the attachment and detachment rates for particles are
asymmetric, the MC phase, which did not exist for the simple
TASEP-LK system, starts occurring as soon as the interactions
are encountered. Our results suggest that the motor proteins
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can experience the maximal current only when the interac-
tions are taken into account, which is an important result from
the biological point of view.

APPENDIX A: PARTICLE CURRENT AND
ATTACHMENT-DETACHMENT TERMS

Substituting 7; = 1 — 1; in Egs. (3)—(9), the expressions for
particle current and attachment-detachment terms are simpli-
fied to following equations as a linear combination of one-,
two-, three-, and four-point correlators:

Jiiv1 = (w) = (titip1) + (@ — D{n(1 — 141)Ti42)
+ @ = Dtio1t) — (Ti-1TiTig1)
+Q2—qg—r){tnanu(l —141)T42), (A1)

Jenr = a((1 = 7)1 = ) +qa((l = 11)12)
= o[l = (1) = (A = g)(r2) — ()], (A2)

Jip = (t(l — )1 — 13)) + g{t1(1 — ©)73)
= () — (un) + (¢ — D{tn(l — n)13), (A3)

Inoin = (I —voo)tv—1 (1 — 7))
+r{tnaty—1(1 — 5))
= (ty_1) — {avartw) — (A = r){Tv_2Tn-1)

+ 1 = r)ty_2Tn-1TN), (A4)

Jexit = B{(1 — tnv_)TN) +7B{TN-1TN)
= Bl{zn) + (r — D{tn_17a)], (AS)

Si.a = gl — (1) + (¢ — D{zi—1) + (Tit1) — (ti—1T)
—(iti+1) + (@ — D{ti-i(1 = w)mi))l,  (A6)
and
Sip = wal(tni) + (r — D{mi—1) + (tiTi1)
+ (0 — D{tiaititiv)] (A7)

APPENDIX B: CONTINUUM-CORRELATED CLUSTER
MEAN-FIELD APPROXIMATION OF p(x) AND f(x)

The left boundary conditions, p; and f;, for the system of
equations in Eq. (45) can be obtained by simultaneously solv-
ing the steady-state master equation for the average density p;
and average two-point correlator fi:

(1= p0)
_ 2
ga (o) —fl)—rf1(l - ﬂ>_(1 _r)[_fl(f’l 1) }:
o o= p1)

(B2)

Similarly, the right boundary conditions, py and fy, for the
system of equations in Eq. (45) can be acquired from the
simultaneous solution of the steady-state master equation for
the average density py and average two-point correlator fy =
fn—1, respectively, given as

2
pn(1 = B)+ fylB =)+ (r = D1+ (1 _r)i_f; —o.
(B3)
_ 2
lgon + (1 — Q)fNJI:M} —rBfy =0. (B4
on(1 = pn)
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