
Journal of Statistical Mechanics:
Theory and Experiment

     

Theoretical investigation of totally asymmetric
exclusion processes on lattices with junctions
To cite this article: Ekaterina Pronina and Anatoly B Kolomeisky J. Stat. Mech. (2005) P07010

 

View the article online for updates and enhancements.

You may also like
A totally asymmetric exclusion process
with hierarchical long range connections
Jakub Otwinowski and Stefan Boettcher

-

Phase transition of generalized restricted
solid-on-solid model in d = 5 + 1 dimension
Jin Min Kim and Sang-Woo Kim

-

Correlation functions of the open XXZ
chain: II
N Kitanine, K K Kozlowski, J M Maillet et
al.

-

This content was downloaded from IP address 168.5.92.206 on 28/11/2022 at 18:32

https://doi.org/10.1088/1742-5468/2005/07/P07010
https://iopscience.iop.org/article/10.1088/1742-5468/2009/07/P07010
https://iopscience.iop.org/article/10.1088/1742-5468/2009/07/P07010
https://iopscience.iop.org/article/10.1088/1742-5468/2015/07/P07010
https://iopscience.iop.org/article/10.1088/1742-5468/2015/07/P07010
https://iopscience.iop.org/article/10.1088/1742-5468/2015/07/P07010
https://iopscience.iop.org/article/10.1088/1742-5468/2015/07/P07010
https://iopscience.iop.org/article/10.1088/1742-5468/2015/07/P07010
https://iopscience.iop.org/article/10.1088/1742-5468/2008/07/P07010
https://iopscience.iop.org/article/10.1088/1742-5468/2008/07/P07010
https://iopscience.iop.org/article/10.1088/1742-5468/2008/07/P07010
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsujtNaUiB0w8yIQGtuD7xkiE55uTHw6dpDBYHhKKjqoTGRc4ttJG45zi6iLdlwiyxHW4bMJxEQ-1xG9kYn7QWEAb3GTPmCpWKcx_nz0U-tvQ-SC9d-1ahUZNm-gxO21zgTCbhB5ced16GRTNlnAp49_w4VYRhuwQHkLMuXh1OOUrwk13T0RtJ7fJwuiKBM9Q0Mr97VzHgckp8xdhbGt6cSLjzzOeZT-3bYYcWIBNOr50hhsvsrzOdSq-tzsXd85QAUYGe4wss6YV3Y4rTIkn-qekjCm1s5em7Z5C6tXbkqLXQ&sai=AMfl-YQHeqH_sVFvnYUQB3IIwh91ee3RLrUNrsM2Nay7uwmkilTLPTutP9jGqgiuQ4LMbpE6GZMjwTElgNYm63jR8w&sig=Cg0ArKJSzAcjumdkKOsc&fbs_aeid=[gw_fbsaeid]&adurl=http://iopscience.org/books


J.S
tat.M

ech.
(2005)

P
07010

ournal of Statistical Mechanics:
An IOP and SISSA journalJ Theory and Experiment

Theoretical investigation of totally
asymmetric exclusion processes on
lattices with junctions

Ekaterina Pronina1 and Anatoly B Kolomeisky1,2

1 Department of Chemistry, Rice University, Houston, TX 77005, USA
2 Department of Chemical and Biomolecular Engineering, Rice University,
Houston, TX 77005, USA
E-mail: pronina@rice.edu and tolya@rice.edu

Received 10 May 2005
Accepted 17 July 2005
Published 29 July 2005

Online at stacks.iop.org/JSTAT/2005/P07010
doi:10.1088/1742-5468/2005/07/P07010

Abstract. Totally asymmetric simple exclusion processes on lattices with
junctions, where particles interact with hard core exclusion and move on parallel
lattice branches that at the junction combine into a single lattice segment, are
investigated. A simple approximate theory, that treats the correlations around
the junction position in a mean-field fashion, is developed in order to calculate
stationary particle currents, density profiles and a phase diagram. It is shown that
there are three possible stationary phases depending on the state of each of the
lattice branches. At first-order phase boundaries, where the density correlations
are important, a modified phenomenological domain wall theory, that accounts
for correlations, is introduced. Extensive Monte Carlo computer simulations are
performed to investigate the system, and it is found that they are in excellent
agreement with theoretical predictions. The application of the theoretical method
for other inhomogeneous asymmetric simple exclusion processes is outlined.
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1. Introduction

Asymmetric simple exclusion processes (ASEPs) were introduced originally in 1968 as
theoretical models for a description of the kinetics of biopolymerization [1]. Although in
recent years the area of application of ASEPs has been significantly broadened [2]–[4], and
it now includes road traffic flow analysis [5, 6], polymer dynamics in dense media [7] and
many other problems, the major application of ASEPs remains the modelling of various
biophysical transport phenomena. In particular, simple exclusion processes have been
used successfully to describe protein synthesis [8, 9], mRNA translation phenomena [10],
gel electrophoresis [11], motion of motor proteins along the cytoskeletal filaments [12] and
the depolymerization of microtubules by special enzymes [13].

ASEPs are discrete non-equilibrium models that describe the stochastic dynamics
of multi-particle transport along one-dimensional lattices. The lattices are finite and
generally consist of L � 1 sites. Each site can be occupied by a single particle or be
empty, and the particles interact only through the hard core exclusion potential. The
dynamics of an ASEP is asymmetric, i.e., the particles can hop to the left or to the
right but with different probabilities. In the simplest totally asymmetric simple exclusion
process (TASEP) the particles move only in one direction. In this case the rules for the
motion are the following. The particle at site 1 ≤ i < L can move one step forward
if the site i + 1 is empty. The particle can enter the lattice at the rate α if the first
site is available, and it can leave the system from the last site i = L at the rate β. In
the stationary-state limit of the TASEP, the system can be found in one of three phases
depending on whether entrance, exit or bulk processes dominate the overall dynamics.

The unusual dynamic properties and phase behaviour of ASEPs and a wide range of
applications in chemistry, physics and biology have stimulated many theoretical studies of
asymmetric exclusion processes [2]–[4]. There are several exact results for the steady-
state properties of ASEPs for different update rules [3, 4], although most theoretical
investigations utilize the approximate methods along with Monte Carlo computer
simulations [8, 9, 14, 15]. The coupling of several exclusion processes has been considered in
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the study of parallel-chain ASEPs [16]–[18]. The combining of non-equilibrium exclusion
processes with equilibrium particle association/dissociation phenomena led to unusual
phenomena of localizations of density shocks [19]–[23]. However, despite the differences in
specific dynamic rules and stationary properties of a specific ASEP, the microscopic origin
of the unusual dynamic properties and phase behaviour can be well understood with the
help of a phenomenological domain wall theory [24, 4].

The majority of the asymmetric exclusion processes investigated involve particle
movement along the one-channel lattices. Although the one-channel approach describes
many situations in biophysical processes, a more realistic description of cellular transport
requires an extension of the original ASEP to include the possibility of transport on
lattices with a more complex geometry. For example, consider the motor protein kinesins
that move vesicles and organelles along the microtubules and play an important role
in cellular transport [25, 12]. Microtubules are made of parallel linear polymers, called
protofilaments, that are arranged circumferentially. It is known that kinesins walk
only on single protofilaments. However, experiments [26] indicate that the number of
protofilaments may vary, at least for in vitro conditions, and this indicates the existence
of junctions and other lattice defects. Such defects might lead to motor protein crowding
phenomena that are responsible for many human diseases [27]. These observations suggest
the importance of investigation of the asymmetric exclusion processes on lattices with
junctions as a model for these complex biological transport phenomena.

Recently Brankov et al [28] have investigated TASEP on chains with a double-chain
section in the middle by using an approximate theory and computer simulations. This
corresponds to having two consecutive junctions on the lattice. Several stationary phases,
the existence of which had not been expected, are found. In addition, the density
profiles at phase boundaries and strong correlations between different lattice branches
have been observed, but this could not be explained because the theory neglected the
correlations. In this paper, we present a theoretical investigation of a TASEP on a
lattice with one junction. We develop a simple approximate theory that allows us to
calculate particle currents, density profiles and a phase diagram at large times. At first-
order phase boundaries, an extension of the domain wall theory [24] that accounts for
correlations is developed. This approach is then applied in explicit calculations of density
profiles. The theoretical predictions are compared with extensive Monte Carlo computer
simulations. In addition, we briefly discuss the application of our method for TASEPs
with two consecutive junctions [28].

The paper is organized as follows. In section 2 the model is introduced and theoretical
calculations of stationary properties are presented. In section 3 theoretical predictions are
discussed and compared with the results of Monte Carlo computer simulations. A final
summary and conclusions are given in section 4.

2. Theoretical description

2.1. Model

We consider identical particles that move along the lattice with the junction positioned
in the middle of the system, as shown in figure 1. The system is out of equilibrium, and
it has three equal-size branches, each containing L sites. The particles can enter chain I
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Figure 1. Schematic picture of the model for a TASEP on a lattice with a
junction. Particles can enter chain I or chain II at the rate α. At the site L + 1
two lattice branches coalesce into chain III, from which particles can exit at the
rate β. Arrows indicate the allowed transitions, while crossed arrows correspond
to the prohibited moves.

or chain II at the rate α if the first site at the corresponding branch is available. Two
chains merge together at site L + 1 and form chain III. The particle can leave the system
at the rate β; see figure 1. Inside the lattice chains the particle can only move one step
forward if the neighbouring site is empty.

Without chain I or chain II, the junction disappears and the system reduces to a
totally asymmetric simple exclusion process on a one-channel lattice, for which the full
description of the stationary properties, such as the phase diagram, particle currents and
density profiles, is known [2]–[4]. This simplest model of a TASEP on a lattice without
junctions has three stationary phases. When the entrance into the system is a rate-limiting
process, for α < 1/2 and α < β, the system is found in a low density (LD) phase with the
current and bulk density given by

JLD = α(1 − α), ρbulk,LD = α. (1)

If the exit controls the dynamics of the system, for β < 1/2 and β < α, the stable
stationary state for the system is a high density (HD) phase with the following current
and bulk density:

JHD = β(1 − β), ρbulk,HD = 1 − β. (2)

Finally, for large entrance and exit rates (α > 1/2 and β > 1/2), when the dynamics is
determined by bulk processes, the system is in a maximal current (MC) phase with

JMC = 1/4, ρbulk,MC = 1/2. (3)

Full density profiles for systems of any size can be calculated explicitly [2].
The microscopic origin of the complex phase behaviour and unusual dynamic

properties of asymmetric exclusion processes can be explained via a phenomenological
domain wall (DW) theory [24]. According to this approach, the domain wall is the
boundary region between two possible stationary phases, and it moves through the system
as a random walker with a speed determined by the currents and densities in the two
phases:

vDW = u+ − u− =
J+ − J−

ρ+ − ρ−
, (4)

doi:10.1088/1742-5468/2005/07/P07010 4
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where ‘+’ (‘−’) corresponds to the phase to the right (left) of the domain wall, and u+ and
u− give the domain wall rates for hopping to the right or left. For vDW > 0 (u+ > u−) the
domain wall moves to the right and the ‘negative’ phase becomes a stationary state of the
system, while for vDW < 0 (u+ < u−) the domain wall travels to the left and the ‘positive’
phase wins over. On the phase boundaries the domain wall has equal probability of going
forward or backward, i.e., u+ = u− and vDW = 0. As a result, the density profiles are
linear. This is due to the fact that the domain wall can be found with equal probability
at any position in the system.

2.2. Theoretical calculations for stationary phases

The overall state of the system is specified by the nature of phases that might exist in each
of the lattice branches. Since only three stationary phases can be found in each lattice
chain (HD, LD or MC), the total number of possible stationary phases in the system with
the junction is equal to 33 = 27. However, because of the symmetry, chains I and II should
have identical phases (see figure 1), and the overall state of the system is determined by
phases in chain I (or II) and chain III. Then the number of possible stationary states
reduces to just 32 = 9.

The overall stationary current passing through the system can be written as

Joverall = JIII = JI + JII = 2JI. (5)

This suggests that chains I and II cannot have the maximal current phase with J = 1/4,
because the maximal possible current through the system is just equal to 1/4. Thus, there
are only six possible stationary phases: (LD, LD), (LD, HD), (LD, MC), (HD, LD), (HD,
HD) and (HD, MC), where, in the expression (A, B), A describes the phase in chains I
and II, while B corresponds to the phase in chain III.

The junction introduces an inhomogeneity in the system and it makes it impossible to
solve the large time dynamics exactly [14, 29]. However, the TASEP on the lattice with a
junction can be mapped onto three coupled homogeneous asymmetric exclusion processes
as shown in figure 2, for which an approximate description can be developed [14, 29].
In order to obtain the dynamic properties of the system explicitly, in the simplest
approximation, we assume that there are no correlations of the occupations of the sites
before and after the junction, i.e.,

Joverall = 2Jjunction = 2〈τL(1 − τL+1)〉 ≈ 2〈τL〉(1 − 〈τL+1〉), (6)

where 〈τL〉 = ρL is the probability of occupation of site L on chain I or II, and
〈τL+1〉 = ρL+1 is the average particle density at the site L + 1 of chain III. The effective
rates αeff and βeff (see figure 2) can be expressed in terms of the particle densities at the
sites near the junction,

αeff = 2ρL, βeff = 1 − ρL+1. (7)

Now we can investigate the existence of different stationary phases. Consider first the
(LD, LD) phase, which can be specified by the following conditions:

α < 1/2, α < βeff ; αeff < 1/2, αeff < β. (8)

doi:10.1088/1742-5468/2005/07/P07010 5
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Figure 2. The totally asymmetric simple exclusion process on the lattice with the
junction can be mapped onto three homogeneous TASEPs coupled at the ends.
The effective rate βeff describes the process of exiting from chains I or II, while
the effective rate αeff corresponds to the entrance into chain III.

The stationary currents and bulk densities are given by

JI = α(1 − α), ρI,bulk = α, JIII = αeff(1 − αeff), ρIII,bulk = αeff . (9)

Using the expression (5) for currents, the effective rate αeff can be expressed in terms of
the entrance rate α:

αeff =
1 −

√
1 − 8α(1 − α)

2
. (10)

Thus αeff always satisfies the conditions (8); however, this equation yields physically
reasonable values of the effective entrance rate only when the term in the square root is
positive, i.e.,

α <
1

2
−

√
2

4
≈ 0.146. (11)

Because ρL+1 = αeff in the (LD, LD) phase, the effective exit rate, as follows from
equation (7), is given by βeff = 1 − αeff . Then the condition α < βeff holds for all
values of the parameters. Thus the system is in the (LD, LD) phase when

β >
1 −

√
1 − 8α(1 − α)

2
and α <

1

2
−

√
2

4
. (12)

For the (LD, HD) phase the conditions of existence can be written as

α < 1/2, α < βeff ; β < 1/2, β < αeff ; (13)

while the stationary currents and bulk densities are

JI = α(1 − α), ρI,bulk = α, JIII = β(1 − β), ρIII,bulk = 1 − β. (14)

Because the particle current is stationary, equation (5) implies that

β =
1 −

√
1 − 8α(1 − α)

2
, and α <

1

2
−

√
2

4
. (15)

These expressions describe the parameter’s space for the (LD, HD) phase.
Similar analysis can be performed for the (LD, MC) phase. The allowed parameters

for this phase are specified by

α < 1/2, α < βeff ; αeff > 1/2, β > 1/2. (16)

doi:10.1088/1742-5468/2005/07/P07010 6
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The currents and bulk densities have the following values:

JI = α(1 − α), ρI,bulk = α, JIII = 1/4, ρIII,bulk = 1/2. (17)

Then the currents in chains I and II are JI = JII = 1/8, which implies that

α =
1

2
−

√
2

4
. (18)

This equation along with the condition β > 1/2 fully determines the region of existence
of the (LD, MC) phase.

The situation is very different for the (HD, LD) phase for which

βeff < 1/2, α > βeff ; αeff < 1/2, αeff < β. (19)

The corresponding equations for the currents and bulk densities are

JI = βeff(1 − βeff), ρI,bulk = 1 − βeff , JIII = αeff(1 − αeff), ρIII,bulk = αeff . (20)

It is known that in this phase ρL = 1 − βeff and ρL+1 = αeff . Then, from equation (7) it
can be shown that

αeff = 2(1 − βeff), and βeff = 1 − αeff . (21)

However, these two equations have no real solutions together, and therefore the (HD, LD)
phase cannot exist for any value of the entrance rate α and the exit rate β.

The (HD, HD) phase is determined from the conditions

βeff < 1/2, βeff < α; β < 1/2, β < αeff ; (22)

The stationary properties of this phase are given by

JI = βeff(1 − βeff), ρI,bulk = 1 − βeff , JIII = β(1 − β), ρIII,bulk = 1 − β. (23)

The stationary condition for the particle currents (see equation (5)) helps to determine
the effective exit rate constant:

βeff =
1 −

√
1 − 2β(1 − β)

2
. (24)

After combining this result with the set of phase existence requirements (22) we obtain
the final conditions for the (HD, HD) phase:

β <
1

2
, if α >

1 −
√

1 − 2β(1 − β)

2
. (25)

The last possible phase in the system is the (HD, MC) phase, which is specified by
the following conditions:

βeff < 1/2, βeff < α; β > 1/2, αeff > 1/2. (26)

The particle currents and bulk densities in this phase are given by

JI = βeff(1 − βeff), ρI,bulk = 1 − βeff , JIII = 1/4, ρIII,bulk = 1/2. (27)

doi:10.1088/1742-5468/2005/07/P07010 7
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Figure 3. Phase diagram for the totally asymmetric exclusion system on the
lattice with the junction. Lines are calculated from theoretical predictions for
phase boundaries, while symbols are from Monte Carlo computer simulations.
The thick solid line corresponds to a non-equilibrium first-order phase transition
between the (LD, LD) and (HD, HD) phases. The thin solid line shows a
continuous phase transition between the (HD, HD) and (HD, MC) phases.
Meanwhile, the thick dashed line describes a mixed phase transition between
the (LD, LD) and (HD, MC) phases: a first-order transformation in chains I and
II, and the continuous phase transition in chain III. The sizes of the symbols
reflect the statistical error of the computer simulations.

From equation (5) it can be easily shown that

βeff =
1

2
−

√
2

4
. (28)

Comparing this result with the conditions (26), we finally derive

α >
1

2
−

√
2

4
, and β >

1

2
. (29)

These expressions describe the phase space for the (HD, MC) phase.
Thus the analysis that considers TASEPs on lattices with junctions as coupled

asymmetric exclusion systems suggests the existence of five phases. The calculated phase
diagram is shown in figure 3. It can be seen that two phases, namely, (LD, MC) and
(LD, HD), correspond to stationary phase boundaries. This result is due to the neglect
of correlations around the junction point. However, for these conditions, the domain wall
that separates two phases can move with equal probability to the right and to the left [24].
Thus the density profiles will be different from the one predicted from the simplest theory,
that treats the correlations around the junction in a mean-field manner. The density
profile can be expected to be linear in chain I and chain II segments for the (LD, MC)
phase, extrapolating between coexisting low density and high density phases, while the
density profile in chain III still corresponds to the maximal current phase. For the (LD,
HD) phase the linear density profiles can be found in all lattice segments, although the
slopes strongly depend on intersegment density correlations.
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2.3. Phase boundaries

The qualitative domain wall arguments presented above indicate that particle density
changes linearly for some phase coexistence lines. However, exact linear density profiles
might differ significantly from the densities obtained within the simplest approximate
theory that neglects the correlations near the junction. Here we utilize the domain wall
approach [24] to account for these correlations in order to derive the phase boundary
density profiles explicitly.

The line specified by α = 1/2 −
√

2/4 for β > 1/2 (see figure 3) describes the mixed
phase coexistence of (LD, LD) and (HD, MC). When crossing this line, the density jumps
in the lattice segments I and II, while the change is continuous in chain III. At the
phase boundary the domain wall in chain I or II moves randomly with equal forward
and backward rates between the low density (ρLD = 1/2 −

√
2/4) and high density

(ρHD = 1−βeff = 1/2 +
√

2/4) regions. The domain wall picture cannot be used in lattice
chain III when the maximal current phase appears [24], and the intersegment correlations
are not significant. Then the resulting density profiles in the left lattice segments are
expected to be linear, connecting the low density and high density values.

Determining the density profiles at the phase boundary between the (LD, LD) and
(HD, HD) phases is a much more complicated problem because of the strong correlations
around the junction. This phase coexistence line is given by the following conditions:

α <
1

2
−

√
2

4
, β =

1 −
√

1 − 8α(1 − α)

2
, (30)

as shown in figure 3. The domain wall separates the coexisting stationary phases and
it can be found in any lattice segment. Here we assume that a single domain wall can
only be found in the lattice chain III, or two domain walls are at the same time in the
segments I and II. Because the lattice chains I and II are identical and the stationary
properties of the system are the results of averaging over many positions of the domain
wall, only the dynamics of the single domain wall in one of the channels I or II should be
monitored. The situation when one domain wall in lattice chain I and/or chain II coexists
with the domain wall in the lattice segment III is not stable and it cannot contribute to
the stationary properties of the system. In this case, the strong current at the junction
quickly eliminates one of the domain walls.

Let us define a position of the domain wall in the system via the relative coordinate
x:

x =
i

L
, (31)

where i is the site index and L is the length of one lattice segment. Therefore, the case of
0 < x ≤ 1 describes chains I and II, while 1 < x ≤ 2 corresponds to chain III. When the
domain wall is in chain I (and simultaneously in chain II) it can move at the same rate
uI to the left or to the right, while in chain III it travels forward or backward at the rate
uIII; see figure 4. These rates can be determined by utilizing expression (4):

uk =
Jk

ρk
+ − ρk

−
, for k = I, III, (32)

doi:10.1088/1742-5468/2005/07/P07010 9
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Figure 4. Schematic picture of the domain wall dynamics at the phase coexistence
line of the (LD, LD) and (HD, HD) phases. The domain wall in chains I and II
hops to the right or left at the rate uI, while in chain III it moves at the rate uIII.

where

ρI
− = α, ρI

+ = 1 − α, ρIII
− = β, ρIII

+ = 1 − β, (33)

and

JI = α(1 − α), JIII = 2JI. (34)

As a result, we obtain the following expressions for the rates uI and uIII:

uI =
α(1 − α)

1 − 2α
, (35)

uIII =
2α(1 − α)

1 − 2β
=

2α(1 − α)
√

1 − 8α(1 − α)
. (36)

To calculate the density profiles we introduce a probability PI of finding the domain
wall at any position in the chain I or II, and PIII gives the probability that the domain
wall is in the lattice chain III. These probabilities are obviously normalized:

PI + PIII = 1. (37)

The probability that the domain wall occupies a specific site i is equal to PI/L or PIII/L
for i < L and i > L, respectively. Then, at the junction,

uIPI/L = uIIIPIII/L. (38)

This relation reflects the fact that the domain wall has equal probabilities of travelling
between different lattice segments. By combining the last two equations we obtain

PI =
uIII

uI + uIII
, PIII =

uI

uI + uIII
. (39)

These expressions have a simple physical explanation. The domain wall spends less time
in the lattice segments where it fluctuates faster. All lattice chains have the same length
L, and the domain wall in the lattice segment where it fluctuates faster is able to diffuse
to the junction point quicker. As a result, it will jump to another lattice chain more
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frequently. This is a reason for strong intersegment density correlations at the first-order
phase transitions.

We can determine the probabilities of having the domain wall at any position less
then a certain value of x. If the domain wall is in channels I and II at the coordinate
xDW, then this probability is given by

Prob(xDW < x) = PIx, 0 < x ≤ 1, (40)

Similarly, for the domain wall in the lattice chain III,

Prob(xDW < x) = PI + PIII(x − 1), 1 < x ≤ 2. (41)

Then the density at any position can be calculated as

ρ(x) = ρk
−Prob(xDW > x) + ρk

+Prob(xDW < x), k = I, III. (42)

Finally, combining equations (33), (35), (36), (39), (40) and (41), we obtain

ρ(x)I = α +
2(1 − 2α)2

2(1 − 2α) +
√

1 − 8α(1 − α)
x, 0 < x ≤ 1; (43)

and

ρ(x)III =
1 −

√
1 − 8α(1 − α)

2
+

2(1 − 2α)
√

1 − 8α(1 − α)

2(1 − 2α) +
√

1 − 8α(1 − α)

+
1 − 8α(1 − α)

2(1 − 2α) +
√

1 − 8α(1 − α)
(x − 1), (44)

for 1 < x ≤ 2. At the entrance sites we have, as expected, ρ(x = 0)I = α, while at the

last site, ρ(x = 2)III = (1 +
√

1 − 8α(1 − α))/2 = 1 − β. At the junction, the densities
are equal to

ρ(x = 1)I = α +
2(1 − 2α)2

2(1 − 2α) +
√

1 − 8α(1 − α)
,

ρ(x = 1)III =
1 −

√
1 − 8α(1 − α)

2
+

2(1 − 2α)
√

1 − 8α(1 − α)

2(1 − 2α) +
√

1 − 8α(1 − α)
. (45)

It is important to note that the densities at the junction are not equal to the values 1−α for
chains I and II, and β = (1 −

√
1 − 8α(1 − α))/2 for chain III, respectively, as expected

from the simplest approximate theory that assumes an independent coupling between
the lattice segments. The domain wall approach allows us to take into consideration the
correlations in the densities around the junction.

3. Monte Carlo simulations and discussion

In order to check the validity of our approximate theory we performed extensive computer
Monte Carlo simulations. Since the computer calculations for the cases of phase transitions
are very time-consuming, especially for small values of entrance and exit rates, we utilized
one of the continuous-time Monte Carlo algorithms, the so-called BKL algorithm, first
introduced by Bortz, Kalos and Lebowitz almost 30 years ago [30]. The main idea of the
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Figure 5. The particle current as a function of the entrance rate α. The exit rate
is fixed; β = 1. The current saturates at α ≈ 0.15 which corresponds to the phase
transition between the (LD, LD) and (HD, MC) phases. A solid line describes
theoretical predictions, while symbols are the results of computer simulations.

BKL algorithm is the creation of an event-driven update scheme, so that the rejected,
‘eventless’ steps are skipped. The method is simple to implement, and with the latest
improvements [31] it is also very efficient and fast.

In our simulations the number of effective steps per site was typically around 107.
At phase transitions we ran simulations much longer, and the number of effective steps
per site was 108–109. For all simulations we neglect the first 3% of Monte Carlo steps to
account for the time that the system takes to achieve a stationary state. Our theoretical
calculations assume infinite size lattice segments; however, in our simulations we used
L = 100 and we checked that for larger sizes of lattice segments the results do not deviate
from the ones presented here.

A phase diagram obtained from Monte Carlo simulations is shown in figure 3. The
boundaries between the stationary phases have been determined by considering the
saturation in the currents and comparing qualitative changes in the density profiles.
Specifically, the phase coexistence line between the (LD, LD) and (HD, HD) phases is
found when the density profiles become linear. The boundary between the (LD, LD) and
(HD, MC) phases is determined when the linear density profile is observed in the chains I
and II, and the overall particle current saturates. Similarly, the current saturation method
allows one to specify the phase boundary between the (HD, HD) and (HD, MC) phases.
The overall error in the determination of the phase boundaries is less than 5% [18]. To
illustrate our approach, the dependence of the current on the entrance rate α (for fixed
exit rate β = 1) is plotted in figure 5. It can be clearly seen that the current saturates at
α ≈ 0.15.

Monte Carlo simulations allowed us also to calculate explicitly the particle densities.
The resulting density profiles for different stationary phases are shown in figure 6. Since
the stationary properties in chains I and II are essentially the same, we investigated in
detail only one of two equivalent lattice segments. The computer simulations for the
densities in the bulk phases are well described by the theoretical predictions. Note,
however, the deviations near the junction that grow as the system approaches the phase
boundaries.
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Figure 6. Density profiles for different bulk stationary phases: (a) the (LD, LD)
phase with β = 1 and three different entrance rates α = 0.05, 0.07 and 0.09;
(b) the (HD, HD) phase with α = 0.8 and three different exit rates β = 0.32,
0.38 and 0.44; (c) the (HD, MC) phase with α = 1 and β = 0.58; (d) the phase
coexistence line between the (LD, LD) and (HD, MC) phases with α = 0.146 and
β = 1. Lines are our theoretical predictions for the full-length density profiles
calculated from α, βeff , αeff and β by using the exact expressions derived in [2].
Symbols are obtained from the Monte Carlo computer simulations.
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Figure 7. Density profiles for the phase coexistence line between the (LD, LD)
and (HD, HD) phases for different parameters: (a) α = 0.02, β = 0.0408; (b)
α = 0.12, β = 0.3020. Solid lines are theoretical predictions from the modified
domain wall theory, namely, equations (43) and (44). Dashed lines correspond to
the predictions of the simplest theory of independent motion of domain walls in
each lattice segment without correlations. Symbols are obtained from the Monte
Carlo computer simulations.

The situation is very different for the phase coexistence line between the (LD, LD)
and (HD, HD) phases. As shown in figure 7, the density profiles that might be expected
from the simplest picture of independent motion of the domain wall in each lattice
segment without correlations are far away from the density profiles obtained in computer
simulations. Our theoretical approach also predicts linear density profiles in all lattice
segments, although with different slopes that are strongly affected by correlations. The
extensive computer simulations (see figure 7) mainly confirm these suggestions, although
the density profiles in chains I and II deviate slightly from linearity. There are several
possible sources of these deviations: (1) the errors in the determination of the exact
position of this phase boundary; and/or (2) the cross-correlation between the particles in
chains I and II, as was observed for a related system [28].

The analysis of the stationary properties of the TASEP on the lattice with a junction
indicates an excellent agreement with the theoretical predictions; see figures 3, 5, 6 and 7.
Although the simplest approximate theory neglects the correlations around the junction,
it does not strongly affect the positions of the phase boundaries, stationary currents
and bulk density profiles. However, the effect of correlations is important at the first-
order phase transitions between the (LD, LD) and (HD, HD) phases. An extension of the
domain wall phenomenological approach, that argues that the domain wall fluctuates with
different rates in the different lattice segments, is able to account for density correlations
as compared with the results from the computer simulations (figure 7).

Our theoretical method can be used successfully to analyse other inhomogeneous
asymmetric exclusion processes. To illustrate it, consider a TASEP with two consecutive
junctions [28] as shown in figure 8(a). The phase diagram and stationary properties of the
bulk phases can be easily obtained via mean-field arguments similar to the one presented
above [28]. However, the density profiles at the phase boundary line (α = β < 1/2) can
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Figure 8. TASEP on the lattice with two consecutive junctions. (a) Schematic
picture of the model; (b) density profiles at the phase coexistence line [28] (for
α = β = 0.25). Solid lines are theoretical predictions from the modified domain
wall theory; symbols are from Monte Carlo computer simulations. The values
0 < x < 1 correspond to chain I, 1 < x < 2 describes chains II and III, and
2 < x < 3 corresponds to chain IV.

only be calculated explicitly using the modified domain wall approach. The results are
shown in figure 8(b) for the phase boundary between the high density and low density
phases. Our theoretical calculations predict that for α = β = 0.25 the slope in the lattice
segments I and IV is equal to 0.0969, and for the segments II and III the slope is 0.484,
which is in excellent agreement with the computer simulations, which give the values
0.0976 and 0.463, respectively.

4. Summary and conclusions

The stationary properties of totally asymmetric simple exclusion processes on lattices with
junctions are investigated with the help of a simple approximate theory and by analysing
extensive computer Monte Carlo simulations. It is found that the phase diagram of the
system consists of three stationary phases. This behaviour is similar to the asymmetric
exclusion processes on lattices without junctions, although the maximal current phase
cannot be sustained in the lattice branches before the junction due to the stationary
current limitations.

There are three different types of phase transition in this system. On the coexistence
line between the (LD, LD) and (HD, HD) phases there are density jumps in all lattice
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segments that correspond to the first-order phase transitions. On the phase boundary
between (HD, HD) and (HD, MC) the density profile changes continually in the lattice
chain III. However, the phase transition between (LD, LD) and (HD, MC) has a quite
unusual mixed character: a first-order transformation in the lattice chains I and II, and
a continuous change in lattice chain III. This phase behaviour differs significantly from
that of the TASEP on the lattices without junctions.

To analyse the dynamics of asymmetric exclusion processes on the lattice with a
junction an approximate theoretical approach has been developed. According to this
theory the system of particles moving on the lattice with the junction can be viewed
as three TASEPs on the lattices without defects that couple at the junction. In the
simplest approximation, the correlations near the junction position are neglected. This
method allows us to calculate explicitly all stationary properties and the phase diagram.
It is found that the theoretical predictions are in excellent agreement with Monte Carlo
computer simulations for all phase regions except for the phase coexistence line between
the (LD, LD) and (HD, HD) phases.

For the first-order phase boundary, where the intersegment density correlations are
important, the modified domain wall approach is developed. We argue that the domain
wall, that separates the low density and high density phases in each lattice segment,
fluctuates with different rates in the different lattice branches. This means that the
domain wall does not spend the same time in all lattice segments, and this leads to the
correlations observed in the system. The computer Monte Carlo simulations fully support
the predictions from the modified domain wall theory. It is suggested that this approach is
general enough to be used successfully to account for correlations in other inhomogeneous
asymmetric exclusion processes. For example, for TASEPs on lattices with double-chain
sections [28], i.e., systems with two junctions, it can explicitly predict the density profiles
and it can explain the observed density correlations.

One of the important properties of asymmetric exclusion processes is particle–hole
symmetry [4]. The transport of particles from the left to the right is identical to the
motion of ‘holes’ in the opposite direction. Thus the model presented above (see figure 1)
can be easily mapped onto a system where particles move along one channel that splits
into two branches at a junction point.

There are several extensions of the system that could be explored in the future. It
is fairly straightforward to generalize our approach to the partially asymmetric exclusion
process with a junction, for which a qualitatively similar phase diagram and stationary
properties are expected. In the original model, the particle dynamics in the lattice
segments before the junction were identical. It will be interesting to investigate a system
where the two lattice branches before the junction are dynamically different. More
complex dynamics is also expected for a system where more than three lattice branches are
joined together at the same junction point. It is suggested that our approximate theory
without correlations and the modified domain wall approach, supported by computer
Monte Carlo simulations, will provide a reasonable way of analysing these complex non-
equilibrium systems.
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