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Abstract

Prediction of side chain conformations of amino acids in proteins (also termed “pack-
ing”) is an important and challenging part of protein structure prediction with many

interesting applications in protein design. A variety of methods for packing have been

developed but more accurate ones are still needed. Machine learning (ML) methods

have recently become a powerful tool for solving various problems in diverse areas

of science, including structural biology. In this study, we evaluate the potential of

deep neural networks (DNNs) for prediction of amino acid side chain conformations.

We formulate the problem as image-to-image transformation and train a U-net style

DNN to solve the problem. We show that our method outperforms other physics-

based methods by a significant margin: reconstruction RMSDs for most amino acids

are about 20% smaller compared to SCWRL4 and Rosetta Packer with RMSDs for

bulky hydrophobic amino acids Phe, Tyr, and Trp being up to 50% smaller.
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1 | INTRODUCTION

De novo protein structure prediction is one of the key fundamental

problems in structural biology and a lot of research efforts are cur-

rently focused in this area. Accurate prediction of the protein struc-

ture from its amino acid sequence is required in order to understand

the molecular details of various biological phenomena and to fully

uncover biological functions of large number of proteins found inside

genomes of living organisms. It can enable efficient in silico protein

design, allowing for the development of new enzymes catalyzing

novel types of reactions, development of new target-specific protein

therapeutics, and many other powerful applications. However, despite

the fact that a protein's fold, in principle, is fully defined by its amino

acid sequence, the prediction task is extremely complex due to the

immense size of the conformational search space, which grows expo-

nentially with the sequence length.

Existing approaches often split protein structure prediction into

two steps: prediction of the protein's backbone conformation (“fold-
ing”) and prediction of the side chain conformations (“packing”). Most

of the currently available methods for side chain packing are physics-

based approaches that involve some sort of search inside a given sam-

ple space, often defined by a library of pre-defined rotamers and/or

an optimization using a well-designed energy function.1–6 These

methods view the problem from a physico-chemical perspective and

are trying to optimize interactions between side chains while avoiding

steric clashes and minimizing the overall energy of the system.

There are currently multiple breakthroughs in machine learning

(ML) methods that are revolutionizing multiple areas of science,

including chemistry, physics, biology, and medicine. A large number of

recent studies explored the potential of applying neural networks

(NNs) and deep neural networks (DNNs) for a variety of difficult prob-

lems for which classical methods are still unsuccessful. This includes

protein modeling, small molecule property predictions, drug discovery

and materials design.7–17 One of the most notable works in the field

of protein structure prediction is AlphaFold and its successor

AlphaFold2, which significantly outperform classical methods for pro-

tein structure prediction.9,18

ML methods have already been used for the task of amino acid

side chain restoration.13,19–22 Nagata et al.13 trained an ensemble of

156 shallow NNs using inter-atomic distances as an input, which
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resulted in a remarkably fast side chain restoration algorithm. The lat-

est version of the OPUS side-chain modeling framework, named

OPUS-RotaNN, which is based on OPUS-TASS, uses DNNs to achieve

even better performance.19 OPUS-RotaNN significantly improves

rotamer sampling and can outperform other methods like OSCAR-

star, SCWRL4, and FASPR.

In this study, we explore the potential of DNNs for the protein side

chain conformation prediction. The problem is formulated as an image-to-

image transformation and a U-net-style DNN is utilized to solve it. We

demonstrate that our method significantly outperforms other published

approaches. Reconstruction RMSDs for most amino acids are about 20%

smaller compared to SCWRL4 and Rosetta Packer, and RMSDs for bulky

hydrophobic amino acids Phe, Tyr, and Trp are up to 50% smaller. We

anticipate that our approach can be useful for a variety of structural

biology-related tasks such as homology modeling, generating point

mutants for in silico protein engineering and other related problems. Since

the direct-coupling analysis (DCA) methods are successful in predicting

contacts between amino acids and inferring the backbone conformations

of proteins, it may be possible to couple our method with DCA to deliver

high-quality full atom structure predictions.23

2 | METHODS

When training a 3DConv Neural Network model to solve the problem

of side chain packing there are three major steps: input generation,

NN inference, and side chain reconstruction. The overall approach is

schematically illustrated in Figure 1. The next three sections describe

these steps in more detail.

2.1 | Description of the dataset preparation

Training and test datasets were created as described by Shroff et al.24 In

short, all entries in the PDB database were clustered to 50% similarity

to avoid bias toward more abundant classes of proteins. From each clus-

ter, only the single structure with the highest resolution was selected

and remodeled using the PDB-redo algorithm, which rebuilds all struc-

tures using a unified algorithm.25 Clusters containing only structures

with resolution lower than 2.5 Å were discarded. If multiple alternative

conformations exist inside the protein structure, only the alternative

conformation with the largest sum of occupancies was used, and other

conformations are discarded. Hydrogen atoms were omitted in our

model and selenomethionine residues were converted into methionine.

This process yielded 19 436 structures, of which 2201 were

reserved as a test set and the rest were used as a training set. This

resulted in about 10 million training examples and one million test

examples.

2.2 | Input data generation

The process of input generation is schematically described on the top

portion of Figure 1. After a target amino acid is chosen for side chain

reconstruction, a 20-Å box containing its surrounding microenviron-

ment is isolated from the protein. The side chain of the target amino

acid (if present) is always removed from the input. For all other side

chain atoms in the box, there are different options depending on what

stage (training/testing/inference) is being performed by the model.

Since the NN in this setup is used to restore all side chains in a

sequential manner (one amino acid at a time), the method should be

able to make predictions using both a pure backbone representation

of a protein and a partially restored representation of a protein (with

some of the side chains already present). Therefore, during the train-

ing stage the side chains of non-target amino acids were removed

using the following algorithm: in 50% of training examples, all side

chains were removed from the input and in the other 50%, a random

fraction of the side chains were removed. All of the amino acid side

chains in the PDB structure were completely removed prior to the

testing stage and then restored one by one.

After the input box is defined and side chains are removed if nec-

essary, all atoms are placed on a grid with 40 � 40 � 40 dimensions

and split into 28 channels: five element channels (one channel each

for C, N, O, S and one for all other elements), one partial charge chan-

nel (partial charges were taken from the Amber99sb force field),

21 amino acid channels (one for each of the 20 canonical amino acids

plus one for all other amino acids), and one label channel that encodes

an amino acid label to restore. While the purpose of all element chan-

nels and the partial charge channel is clear, the purpose of 21 amino

acid channels is to propagate the information about the sequence,

which is necessary because some or even all side chains are removed.

The backbone atoms of each amino acid in the input box are repeated

in the respective channel (in addition to being present in their respec-

tive element channels). For example, if there is a phenylalanine residue

present, its backbone (C, N, Ca, and O) atoms are copied into one phe-

nylalanine channel. This way the information about protein sequence

is not lost after removal of side chains. The output is similar to the

input with two major differences: only four element channels are pre-

sent (C, N, O, and S since only these four elements are present in

amino acid side chains) and the target side chain is present. Note that

only one target side chain is restored at a time, while all the other side

chains present in the box are left as they are.

2.3 | NN architecture and training

We conceptualized the problem of side chain restoration as an image-

to-image transformation and opted for a U-net architecture, which is

frequently used in this field.26–30 One major difference, however, is

that our inputs are 3D images, which require the use 3D convolutions

in our architecture. The final architecture is shown on the right in

Figure 1. First, amino acid labels are added as an additional channel

through a fully connected (FC) layer, whose output is then reshaped

and concatenated with the rest of the input. The encoder has three-

strided 3D convolutional layers with 3 � 3 kernel size, stride 2, and

ReLU (Rectified Linear Unit) nonlinearities. The number of con-

volutional filters are 128, 256, and 512, respectively. After the

encoder, six residual blocks follow with identical architecture shown
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in the middle of Figure 1. Residual blocks also use ReLU nonlinearities

between convolutions. The final part is the decoder, which essentially

mirrors the structure of the encoder, but uses �2 upsampling to scale

tensor sizes up and Leaky ReLUs as nonlinearities (α = .2). As the U-

net architecture implies, the respective outputs from encoder layers

were concatenated with outputs of decoder layers before feeding into

the next layer. The very last 3D convolution used four filters to output

the four element channels. This architecture was implemented in

Python using TensorFlow 2.4. The NN was trained for about 1.5

epochs with a step-wise learning rate schedule and a batch size of 32.

The initial learning rate was 1 � 10�5 and was decreased by a factor

of 10 each time loss stopped improving. The loss was mean absolute

error (MAE) between prediction and ground truth. Additionally, we

added what we call a region of interest loss, which is just MAE in the

voxels with side chain atoms being restored, which was given larger

weight (100 in the final version) to force the NN to put more attention

into that region.

2.4 | Side chain restoration

The output from our model is not atom positions, but a 3D density

map, where values of each voxel (the 3D analog of a pixel) are propor-

tional to the probability of finding an amino acid's side chain atom at

that location (Figure 1E, bottom row). Converting this output into

actual atom positions can be done in a number of ways. We settled

F IGURE 1 Overview of our side chain restoration algorithm. (A) Input data generation and U-net architecture. After an amino acid is chosen,
a cube comprising its microenvironment is isolated from the protein and atom positions are placed on a grid and split into a number of different
input channels. The input is then fed into the 3DConv U-net, consisting of encoder, six residual blocks and a decoder. Structure of a residual
block is shown in blue. The output is a 3D density, outlining predicted side chain conformation. This prediction is then turned into side chain atom
positions by fitting a pre-calculated library of side chain conformations. (B) Training loss curves for different NN architectures with different
numbers of filters in the first 3DConv layer and different numbers of residual blocks. Vertical lines correspond to step-wise decreases of the
learning rate. Bottom row: Illustration of input and output. (C) Cartoon representation of the amino acid's microenvironment. Only the backbone
is left at this stage. (D) Encoded atom positions. Each atom is represented as a 3D Gaussian density kernel. Only the sum of four element
channels (C, N, O, S) is shown for simplicity. (E) Output from the U-net. Sum of four element channels (C, N, O, S) is shown. (F) Reconstructed
amino acid side chain (Trp in this case, shown in red). All images were generated using PyMol
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on an approach that uses a library of side chain conformations

because this approach guarantees valid conformation as a result. We

used our training dataset to build a library of side chain conformations

for each amino acid. The library is backbone-independent and created

in such a way that it contains a list of side chain conformations in

which RMSD between any individual conformation and all other con-

formations exceeds some threshold value. The threshold values for

each amino acid were manually tuned so that the final library includes

a decent, but not overwhelming number of different conformations.

Threshold values that we used as well as the final numbers of side

chain conformations are presented in Table S1.

After NN inference, all side chain conformations in the library for

a target amino acid are placed on a grid (see Section 2.2) and com-

pared to the NN's prediction by calculating a fitness score as the mean

absolute difference between the prediction and the current conforma-

tion. The conformation with the lowest score is then chosen as the

final prediction. An advantage of this procedure is that it guarantees

the prediction to be a valid conformation. The final fitness score can

also be used as a measure of prediction quality: higher scores corre-

spond to poorer prediction quality and therefore higher uncertainty.

2.5 | Detection of salt bridges

We consider that a salt bridge between Arg or Lys and Asp or Glu is

formed if any of the side chain nitrogen atoms of Arg or Lys are within

3.2 Å of any side chain oxygen atoms of Asp or Glu.

2.6 | SCWRL4 and Rosetta Packer validation

SCWRL4 (ver 4.02) was run in default configuration. For Rosetta

Packer (ver 3.12) the maximum number of rotamers were considered

by passing �EX1, �EX2, �EX3, and �EX4 flags and invoking fixbb

using the default scoring function (ref2015) unless stated other-

wise.31,32 We tried further increasing the number of rotamers for

surface residues by using extrachi_cutoff 0, but that resulted in mar-

ginal improvement of RMSDs while leading to much longer calcula-

tion times.

3 | RESULTS

3.1 | Architecture of NN

We first started by optimizing some of the hyperparameters of our

model, including the size of the microenvironment in relation to the

network input and output, number of convolutional filters in the

NN, and number of residual layers, as presented in Figure 1B. We

found that increasing the number of convolutional filters gives sig-

nificant improvements in performance up to 128 filters in the first

convolutional layer (the subsequent layers of decoder always double

the number of filters of the previous layer), but further increases did

not yield further improvements, perhaps due to larger memory con-

sumption and smaller batch size during training. We then found that

the addition of residual blocks between the encoder and decoder

also leads to significant improvement in performance. We tried

adding up to nine residual blocks in increments of three. Six residual

blocks gave the best performance boost and further increase did

not seem to improve the loss further in our experiments. Finally, we

hypothesized that using a larger microenvironment (compared to

our initial 20-Å box) could yield further improvements. The initial

cutoff value of 20 Å was chosen because it was already used in the

literature and it is just enough to fit all side chains of all amino acids.

It also seems to include enough of the surrounding atoms. Larger

cutoff values could provide more information to predict the larger

amino acid side chains like Arg and Lys. We therefore tried using

30-Å box as the input and output size, but that did not lead to any

measurable gains in performance, while requiring about three times

longer training and predictions times. Additionally, the use of Bat-

chNorm layers also did not give any performance boost in our

experiments. Our final architecture is therefore illustrated in

Figure 1.

3.2 | Performance analysis

Figure 1 illustrates our best performing architecture. We found that

residual blocks in the middle significantly boost performance, with six

blocks delivering the best performance. Further increase in the num-

ber of blocks did not lead to further improvement in our experiments.

Increasing the number of convolutional filters also improves the per-

formance at the cost of longer training and inference times. Bat-

chNorm layers also did not give any performance boost in our

experiments.

We used RMSD as a key metric to measure the performance of

our algorithm and to compare it to existing models for amino acid side

chain prediction. Our method's performance is compared with that of

SCWRL4 and Rosetta Packer, as both are well known and widely uti-

lized approaches.1,31,33–37 Each algorithm was used on �1000 PDB

structures from our test dataset. The results of these comparisons are

presented in Figure 2 and Table S2. In all results shown and discussed

below, we report the performance on full protein packing: we first

remove all the side chains from the protein and then restore them one

by one in a sequential fashion. Several restoration ordering strategies

are devised and discussed as well.

As one can see from Figure 2, DLPacker significantly outperforms

both SCWRL4 and Rosetta Packer for all amino acids. The most signif-

icant improvement is achieved for large hydrophobic amino acids like

Trp, Phe, and Tyr. The improvement is also significant for a number of

charged and polar amino acids such as Arg, Lys, His, Asp, and Glu. To

further validate the model's performance, an additional test was per-

formed using PDB structures deposited in 2020 and 2021 (i.e., after

construction of our original dataset) using PISCES server, which

yielded almost identical results, details can be found in Supporting

Information Material S1.38
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To evaluate the performance of DLPacker in more detail, we first

analyzed RMSD histograms for bulky hydrophobic amino acids Phe,

Tyr, Trp, and His (Figure 3). Histograms for all four amino acids show

two major peaks: one peak in the region of low RMSDs (below 2 Å)

and one in the region of high RMSDs (2 Å and above). The first peak

represents correct prediction of χ1 dihedral angle, which leads to small

RMSD errors during reconstruction. Small RMSD errors equate to cor-

rect reconstruction of the side chain and that the entire side chain will

be located in approximately the correct location. Here we say

“approximately in the correct location” because it is important to take

into account the existence of thermal fluctuations at normal tempera-

tures, the limited resolution of experimentally determined structures,

and other factors that lead to impossibility of precise reconstruction.

The second peak, however, represents incorrect prediction of χ1,

which places side chains in the wrong place entirely. This scenario is

problematic as it not only leads to an incorrect reconstruction of one

amino acid, but can potentially lead to incorrect reconstruction of the

entire surrounding microenvironment.39,40 Based on this observation,

we measured what we call error rates for all three algorithms and

compare them in Table 1. The thresholds in Table 1 were chosen to

lie between the low and the high RMSD maxima. The exact values of

these thresholds, thus, will not affect the error rates in a significant

way since the number of RMSD predictions lying around the chosen

threshold values is very low, which makes this analysis robust. It can

be seen that DLPacker significantly reduces error rates for all four

bulky hydrophobic amino acids. For example, in the case of Phe, the

error rate decreases from 4.8% for SCWRL4 and 3.6% for Rosetta

Packer to 1.2% for DLPacker. Similar improvements are observed for

Tyr and Trp: DLPacker demonstrates about a fourfold reduction in

error rate compared to SCWRL4 and a threefold reduction compared

to Rosetta Packer. The improvement for His is more moderate: about

1.8–2 times.

Figure 4 shows how the error rates depend on an amino acid's

position in a protein. We use atom counts in an amino acid's microen-

vironment as an indicator of its position within a protein: higher atom

counts correspond to the denser environment of a protein's core,

while lower atom counts indicate either a very small protein or the

surface of a protein. This is important since erroneous side chain pre-

dictions for bulky amino acids in dense environments are much more

likely to cause incorrect packing of larger regions around them. As a

result, large portions of protein's hydrophobic core have a chance of

not being reconstructed accurately, which can be problematic for

some downstream tasks. In contrast, an incorrect side chain confor-

mation on the surface of a protein might not lead to significant disrup-

tions. As Figure 4 illustrates, the error rate for all algorithms decreases

significantly as the number of atoms in the microenvironment

increases, which is expected as more crowded environment leads to

more interactions with neighboring residues. DLPacker exhibits signif-

icantly smaller error rates across the whole range of atom counts and

for all amino acids presented in Figure 4.

Next, we wanted to investigate the quality of side chain restora-

tion for charged amino acids, like Arg, Lys, Asp, and Glu. Since these

amino acids have multiple degrees of freedom (up to four dihedral χ

angles), an analysis similar to that performed for bulky hydrophobic

amino acids above is not possible, as the RMSD histograms do not

show any useful structure. Instead, we decided to analyze the quality

of reconstruction of salt bridges formed by charged amino acids since

salt bridges play a significant role in protein structure formation and

stabilization. Results of this analysis are presented in Table 2. We used

a precision-recall metric to quantify the quality of salt bridge recon-

struction. The precision value shows what fraction of salt bridges in

reconstructed protein structure exist in the original PDB structure,

while the recall value shows what fraction of salt bridges from the

original PDB structures were reconstructed. The F1 score is a har-

monic mean of precision and recall

F1 ¼2�precision� recall
precisionþ recall

, ð1Þ

which serves as an aggregated value showing the quality of prediction

and combines precision and recall into a single value. We can see that

DLPacker outperforms both SCWRL4 and Rosetta Packer leading to

F IGURE 2 Side chain
prediction RMSDs for SCWRL4,
Rosetta Packer, and our DLPacker
(lower is better). DLPacker
outperforms other methods on
every amino acid, especially on
aromatic amino acids Phe, Tyr,
and Trp. Standard deviations of
the reported means do not

exceed 0.01
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the highest F1 score among the three: 0.62 versus 0.56 for Rosetta

Packer and 0.50 for SCWRL4.

It is also interesting to look at the comparison between MAE of χ

angles produced by the algorithms in comparison (Table 3). DLPacker

works much better than other methods when comparing MAEs of χ1,

but as we move to χ2, χ3, and χ4, it starts to lose its advantage.

Charged and polar amino acids with lots of degrees of freedom (Lys,

Arg, Glu, Gln) seem to be the most challenging ones for our method:

DLPacker is often worse at predicting χ3 and χ4 than SCWRL4 and/or

Rosetta Packer. Apparently, the model struggles assigning conforma-

tions to amino acids with large number of degrees of freedom (the

number of available conformations grows exponentially with the num-

ber of degrees of freedom, that is, χ angles in this case), while having

fewer troubles dealing with bulky amino acids with smaller number of

degrees of freedom. New training methods that might improve

TABLE 1 Side chain reconstruction error rates for bulky amino
acids

Error rate, %

AA
name Threshold, Å SCWRL4 Rosetta Packer DLPacker

Phe 3.0 4.8 3.7 1.2

Tyr 3.0 6.2 5.0 1.4

Trp 2.0 20.3 14.6 5.1

His 2.5 11.1 10.8 6.1

Note: Values are measured on �1000 PDB structures from the test set.

Errors are defined as predictions with high RMSDs, higher than the

particular threshold. The motivation for this definition is illustrated in

Figure 3 and addressed in more detail in the text. DLPacker demonstrated

smaller error rates resulting in higher quality of reconstruction of side

chains of bulky amino acids.

F IGURE 3 Side chain prediction RMSDs for four bulky amino acids: Phe, Tyr, Trp, and His. All histograms have similar structure and show
two major peaks (three in the case of His). Insets show high RMSD peaks in more detail. Cartoon models of side chains (gray is the ground truth,
green is prediction) show specific examples of side chain restoration errors that compose each peak. Our algorithm (DLPacker) yields significantly
fewer predictions with high RMSD resulting in higher quality packing
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assignment of side chains for these amino acids is an area of further

research interest.

3.3 | Optimization of restoration order

Since our approach implies the restoration of side chains structure in

a sequential manner (one amino acid at a time), we need heuristic

arguments to choose the most optimal restoration order. In this study,

we explored three different ordering strategies. First, we tried a naive

strategy that restores side chains in the order of protein's sequence:

from N-terminus to C-terminus. This strategy is both simple and

effective since amino acids that are next to each other in the

sequence will also be next to each other in the 3D structure. Next, we

tried a strategy that orders amino acids according to the number of

atoms in their microenvironment and restores side chains in the most

crowded microenvironments first. This strategy assumes that it is eas-

ier to correctly predict side chain conformation in more crowded

microenvironment because there are more interactions and a larger

fraction of the volume is already occupied by backbone atoms. It

roughly corresponds to first restoring the side chains in the protein's

interior and then gradually moving to its exterior. The last strategy

orders amino acids according to the prediction quality and is a two-

stage process. First, predictions are made for each amino acid (without

actually restoring the side chains) and then residues are sorted by

their prediction score, normalized by the number of atoms in a side

chain (see Section 2.4). The rationale is that the lower fitness score

F IGURE 4 Side chain reconstruction error rates for bulky amino acids as a function of the number of atoms in their microenvironment.
Values are measured on �1000 PDB structures from the test set. Vertical lines show standard deviations. The definition of the error rate is
defined in detail in the text. The number of atoms in the surrounding microenvironment is an indicator of an amino acid's position in a protein:
higher atom counts indicate that an amino acid is located in the protein's core, while low atom counts indicate a location on or near the surface.
DLPacker demonstrates smaller error rates at all atom counts resulting in higher quality of reconstruction of cores of proteins as well as their
surfaces

TABLE 2 Salt bridge reconstruction metrics measured on �1000
PDB structures from the test set

Precision Recall F1 score

SCWRL4 0.59 0.44 0.50

Rosetta Packer 0.59 0.54 0.56

DLPacker 0.70 0.56 0.62

Note: DLPacker outperforms SCWRL4 and Rosetta Packer by all three

metrics indicating higher quality side chain reconstruction for charged

amino acids. Details are in the text.
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corresponds to the smaller prediction uncertainty and more likely to

lead to correct predictions. Side chains are then restored in the

second pass.

All three methods yield similar results, with the first strategy per-

forming slightly worse than the other two for most amino acids

(Figure 5). The best performing strategy is the third one (by the pre-

diction score) with the only drawback being that it uses twice as much

time and computational resources since we need to pass through the

whole protein's sequence twice. The second strategy (by the number

of atoms in the microenvironment) seems to be a perfect compromise

between speed and quality.

3.4 | Performance on raw PDB structures

Since our algorithm was trained and tested on PDB structures refined

by the PDB Redo server, we wanted to test how well it generalizes to

raw PDB structures.25 The results are shown in Figure 5. The resulting

RMSD values are only slightly larger in the case of Raw PDB struc-

tures. It is not clear, however, if this difference is due to PDB Redo

structures having higher quality (better resolution) or due to the Raw

PDB structures just being slightly different from the data our algo-

rithm was trained on.

3.5 | Significance of partial charges as input

To investigate the significance of information about the partial char-

ges of atoms on the accuracy of our predictions, we performed an

additional test by removing information about charges from the input

(by setting all charge values to zero) and evaluating our model's per-

formance. The results are presented in Figure S1. Removal of charges

only moderately affects accuracy of predictions, mostly affecting

charged and polar amino acids, as expected. From these results, we

TABLE 3 Comparison between mean absolute errors of χ angles for SCWRL4, Rosetta Packer, and DLPacker

MAE, � MAE, �

AA name Software χ1 χ2 χ3 χ4 AA name Software χ1 χ2

SCWRL4 28.4 28.3 58.0 59.1 SCWRL4 22.3 45.0

Arg Rosetta Packer 24.3 26.9 54.4 55.3 Asn Rosetta Packer 20.6 41.2

DLPacker 18.6 24.6 48.5 57.0 DLPacker 15.1 38.2

SCWRL4 29.5 30.5 36.9 53.2 SCWRL4 22.0 20.9

Lys Rosetta Packer 25.6 30.0 37.9 51.9 Asp Rosetta Packer 21.3 19.9

DLPacker 19.1 28.8 43.4 65.8 DLPacker 14.2 16.4

SCWRL4 34.8 38.8 31.4 SCWRL4 13.2 19.5

Glu Rosetta Packer 32.7 37.4 30.3 Leu Rosetta Packer 10.8 19.0

DLPacker 25.0 31.7 31.3 DLPacker 7.9 15.6

SCWRL4 27.6 43.1 54.2 SCWRL4 10.4 22.1

Gln Rosetta Packer 24.2 35.2 49.1 Ile Rosetta Packer 9.3 19.5

DLPacker 21.3 33.2 50.2 DLPacker 7.6 19.8

SCWRL4 21.4 31.4 53.1 SCWRL4 18.5

Met Rosetta Packer 19.0 23.8 48.4 Thr Rosetta Packer 16.9

DLPacker 13.8 20.4 44.9 DLPacker 12.8

SCWRL4 12.2 12.3 SCWRL4 41.2

Phe Rosetta Packer 9.2 10.0 Ser Rosetta Packer 36.6

DLPacker 5.3 7.7 DLPacker 24.0

SCWRL4 13.7 12.5 SCWRL4 20.5

Tyr Rosetta Packer 10.8 10.5 Cys Rosetta Packer 14.0

DLPacker 5.5 8.2 DLPacker 11.4

SCWRL4 15.1 32.7 SCWRL4 15.0

Trp Rosetta Packer 12.8 24.5 Val Rosetta Packer 13.5

DLPacker 5.6 12.3 DLPacker 10.1

SCWRL4 19.2 67.5

His Rosetta Packer 17.7 58.8

DLPacker 12.1 55.6

Note: The values were obtained by averaging MAE values for �1000 PDB structures from the test set. Bold values show minimum among three packages

in comparison.

MISIURA ET AL. 1285



can conclude that the information about the charges is not a key

driver of DLPacker's performance and that use of different force fields

is unlikely to yield major improvements. This finding suggests that the

most crucial information for correct packing is provided by atom coor-

dinates and atom types.

4 | DISCUSSION

We developed and comprehensively evaluated a new deep learning

approach for amino acid side chain prediction in proteins. Besides

much better performance compared to other commonly used tools,

our approach has a number of other advantages. It can be used on

any protein structure, including structures of protein complexes,

structures containing DNA, RNA, or any small molecules. Our

approach can also be utilized in a combination with other physics-

based approaches, for example, as one component of a scoring func-

tion. The output from the NN is a 3D density map, in which values in

every voxel are proportional to probability of finding an amino acid's

side chain atom at that location (Figure 1C), which can be used to

score every possible rotamer of an amino acid. This score can then be

applied, for example, as a Context Independent One Body Energy

term and added to the default Rosetta scoring function. In our experi-

ments, however, this did not lead to further improvement compared

to our algorithm (data not shown). There are several other directions

that can be explored by connecting our method with existing

approaches in order to optimize the whole process of amino acid side

chain structure prediction in proteins.

Traditional methods of packing of amino acid side chains rely

heavily on hand-crafted scoring functions, which try to take into

account all known interactions in proteins.41 This approach, however,

is fundamentally limited by our knowledge of aforementioned interac-

tions. The list of currently known interactions in proteins is quite long.

In addition to well-known and studied ones, like Van der Waals forces,

electrostatic interactions, and hydrogen bonds, there is also a list of

less studied interactions, which include π�π stacking, π–cation, π–

anion, π–sulfur, NH–π, CH–π, C–halogen–π interactions.42–52 To

make things more complicated, while all the interactions listed above

are usually viewed and characterized as two-body interactions, that is

just a simplification of the real picture and many interactions can be

highly affected by multi-body effects. Other still unknown two-body

and more complicated multi-body interactions are also likely to exist

in proteins.53–56 All these factors enormously complicate the develop-

ment of scoring functions for protein packing and make it extremely

difficult to estimate the strengths of all interactions and their depen-

dence on geometry and nature of the microenvironment.

Deep learning approaches, on the other hand, have no need for

explicitly defined scoring functions and do not require any assump-

tions on strength and nature of any existing interactions.9,57–60 Stud-

ies suggest that current number of structures in PDB allows for

careful and precise estimation of interactions between amino acids,

including multi-body interactions.54,56 Trying to elucidate the roots of

DLPacker's performance, we looked at some of the structures where

it yielded correct prediction, while Rosetta Packer (the better per-

forming of two algorithms we compared to DLPacker in this study)

did not. Results are presented in Figure 6. Visual inspection shows

that the most frequent reason of Rosetta Packer's failure was posi-

tioning side chains facing outwards (into solution) instead of burying

into a protein. This is true for the most structures shown in Figure 6—

instead of putting the target side chain in position to interact with

other side chains shown, Rosetta Packer put it facing outwards and

often formed no strong interactions at all. This may be a result of

either underestimation of the strengths of some interactions or draw-

ing from a limited number of initial rotamers which do encompass the

correct configuration of side chain atoms. In our experiments, how-

ever, further increase of the number of initial rotamers only marginally

improved RMSD, while drastically increasing computational time.

We have also investigated instances where DLPacker predicted

the wrong conformation, while Rosetta Packer predicted the correct

one. The pool of such cases is quite small due to DLPacker's

(A) (B)

F IGURE 5 (A) Effect of different restoration order on reconstruction RMSD. All three ordering strategies—by sequence, by number of atoms
in the microenvironment, and by quality of prediction (prediction score)—yield approximately the same results, but latter is the best.
(B) Comparison between performance on PDB Redo structures and raw PDB structures. Performance on raw PDB structures is only slightly
worse. More details are in the text

1286 MISIURA ET AL.



performance, but we identified a few characteristic cases of failure,

which are shown in Figure 7. In some cases, our model's prediction is

just wrong, as exemplified in Figure 7A, despite being seemingly rea-

sonable and confident. This is most often observed for aromatic

amino acids (Trp, Tyr, Phe). In the cases of large amino acids with

larger number of degrees of freedom (Lys, Arg, Met) we often see pre-

dictions like the one depicted in Figure 7B using Lys as an example:

the model only outputs confident prediction for a part of the side

chain closest to the backbone and does not output good prediction

for the rest of the side chain (in Panel (B), this corresponds to green

volume, showing NNs prediction, not covering part of the predicted

side chain). We hypothesize that this is the consequence of large

number of degrees of freedom and hence large number of available

conformations leading to model not being able to find a specific con-

formation to output. This is what most likely leads to growing MAEs

for χ angles as we move to χ3 and χ4 (Table 3). More powerful models

possibly combined with active learning techniques might help to

achieve a better performance for these amino acids. Another frequent

situation we observed is depicted in Figure 7C–F. In all these cases,

our model predicts multiple possible conformations for the target side

chain. In many such cases, we see that the correct conformation is

also encapsulated into prediction, so it was probably “outpaced” by

the incorrect one by a little bit. These cases make us think that there

is a potential of combining models similar to ours with physics-based

algorithms, where our method can serve as an additional component

of a force field.

We hypothesize that the source of the DLPacker's high perfor-

mance is the ability to carefully infer strengths of multiple two-body

and multi-body interactions existing in proteins. We note that

DLPacker demonstrates the largest improvement for aromatic amino

acids (Phe, Tyr, and Trp). These amino acids are known to form the

largest number of various X–π interactions, which involve their aro-

matic systems. These interactions are also likely to be highly

influenced by the amino acid's microenvironment due to high polariz-

ability of aromatic electrons, potentially leading to complicated depen-

dencies on geometry and nature of its microenvironment.

As was already discussed, our algorithm outperforms other exis-

ting methods such as SCWRL4 and Rosetta Packer. It should be

noted, however, that currently this comes at the cost of the increased

computational time and resources (GPU, see Table 4). Despite the fact

that SCWRL4 shows poorer metrics, it is highly optimized for speed

and is notably faster than our approach. In our experiments, SCWRL4

was about seven times faster than out algorithm. Rosetta Packer, on

the other hand, was about two times slower than the DLPacker (if run

with the maximum number of rotamers, as described in Section 2, to

achieve the performance we report in this study). If run with default

parameters, Rosetta Packer becomes significantly faster at the cost of

worse metrics, which are close to that of SCWRL4. It should be also

noted, however, that SCWRL4 and Rosetta Packer are highly opti-

mized and compiled C codes, while DLPacker runs as Python code,

and if better performance is required, our method can be re-

implemented in C for additional performance gain. In our current

F IGURE 6 Examples of amino acids for which DLPacker yielded correct result, but Rosetta Packer did not. Backbone is shown in cartoon
representation (cyan) and selected side chains are shown using stick representation. Ground truth side chains are shown in green, DLPacker's
output in cyan, and Rosetta Packer's in yellow. PDB codes of structures and amino acid names are shown as well
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algorithm, only a fraction of the computational resources are used to

generate predictions using the NN; a lot of the time is spent on gener-

ating input data (aligning the protein structure to properly position

each target amino acid in the input box and then putting microenvi-

ronment atoms onto the 3D grid) and converting the output from

density into valid side chain conformations. More efficient methods of

performing these steps are expected to significantly accelerate

DLPacker.

Others have already used ML/DL techniques for side chain pack-

ing. SIDEpro uses an ensemble of NNs that deliver packing RMSDs on

par with SCWRL4 while being significantly faster.13 OPUS-RotaNN

uses a set of deep NNs (convolutional NN, recurrent NN, and trans-

former) on a set of hand-crafted features, including evolutionary fea-

tures, and delivers moderate improvement of packing quality on some

datasets.19 Our method, in contrast, does not rely on evolutionary

information and uses only information derived from target protein's

backbone conformation and sequence. We think that our new method

can be effectively utilized for situations that require highly precise

side chain localization and where the computational times and

resources are not a limiting factor. It will be important to develop our

approach further to make it faster and work in conjunction with other

available models as part of an integrated workflow for structural biol-

ogy and protein engineering applications.

5 | CONCLUSIONS

Structural prediction of side chain orientation necessitates effectively

filling space while simultaneously avoiding steric clashes. Here, we

employed a 3D convolution network to better capture the underlying

three-dimensional spatial relationships and show our novel approach

toward amino acid side chain packing outperforms classical methods.

While DLPacker translates atomic coordinates to predict a spatial

density before restoring the coordinates of the improved side chains,

we envision further refinements to our method could remove the nec-

essary spatial translation and simply predict the side chain coordinates

from only a list of input 3D coordinates, which might be achieved

using highly specialized NN architectures.
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F IGURE 7 Examples of incorrect predictions by DLPacker. Ground truth is shown in gray with the target side chain depicted as sticks. Green
volume shows DLPacker's model output and the final chosen side chain conformation is shown in red. In some cases, predictions are wrong (A) or
incomplete (B), but in some cases, the model can output multiple possible conformations (C–F), which encapsulate the correct conformation as
well as incorrect ones

TABLE 4 Comparison between average running times between
different algorithms in comparison in this study

Hardware Average time per structure, s

SCWRL4 CPU 7.2

Rosetta Packer CPU 91

DLPacker CPU + GPU 43

Note: Performance was measured on 1000 PDB structures from our test

dataset using Ubuntu 18.04 workstation with i9 CPU and RTX3090 GPU.
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