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Abstract
It is widely believed that biological tissues evolved to lower the risks of cancer development. One of
the specific ways to minimize the chances of tumor formation comes from proper spatial
organization of tissues. However, the microscopic mechanisms of underlying processes remain not
fully understood. We present a theoretical investigation on the role of spatial structures in cancer
initiation dynamics. In our approach, the dynamics of single mutation fixations are analyzed using
analytical calculations and computer simulations by mapping them to Moran processes on graphs
with different connectivity that mimic various spatial structures. It is found that while the fixation
probability is not affected by modifying the spatial structures of the tissues, the fixation times can
change dramatically. The slowest dynamics is observed in ‘quasi-one-dimensional’ structures, while
the fastest dynamics is observed in ‘quasi-three-dimensional’ structures. Theoretical calculations
also suggest that there is a critical value of the degree of graph connectivity, which mimics the
spatial dimension of the tissue structure, above which the spatial structure of the tissue has no effect
on the mutation fixation dynamics. An effective discrete-state stochastic model of cancer initiation
is utilized to explain our theoretical results and predictions. Our theoretical analysis clarifies some
important aspects on the role of the tissue spatial structures in the cancer initiation processes.

Cancer remains one of the most serious health prob-
lems in our society [1]. It is well known that tumor
formation is the result of uncontrolled division of
malfunctioning cells that harbor several types of
genetic or epigenetic alterations, which, in turn, are
caused by intrinsic errors during DNA replication
and repair as well as by some other external factors
[1–5]. Cancer can strike any part of the body, but the
probability of being diagnosed with a specific type of
cancer wildly varies for different types of tissues [6, 7].
It is now strongly believed that tissues have evolved
to minimize the risk of tumor formation in them
[8–12]. Specific spatial cellular organization of tissues
has been proposed as a possible pathway to achieve
this goal, although the mechanisms of underlying
microscopic processes remain not well understood
[8, 10, 13, 14].

There are multiple theoretical investigations on
microscopic mechanisms of cancer initiation that uti-
lized a wide spectrum of mathematical methods and
approaches [15–24]. The majority of them, however,
consider tissues as structureless well-mixed homo-
geneous cellular medium, thus ignoring the spatial
organization and cellular heterogeneity. In addition,
most of these studies concentrated on probabilities of
mutation fixation as indicators of the appearance of
tumors [25], while the dynamics of cancer initiation
has been rarely explored in theoretical investigations
[22–24]. It is important to note that cancer initiation
should be characterized by at least two quantities:
(1) cancer life-time risk, which is proportional to
the mutation fixation probability; and (2) cancer
initiation time, which can be approximated by the
mutation fixation times. The knowledge of these two
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properties should provide a quantitative measure of
the danger of developing the tumor [22–24].

To better understand the heterogeneity of cells
and interactions during the formation of tumors
in tissues, the method that considers evolutionary
dynamics on graphs has been introduced in 2005 [26].
The main idea here is that every cell can be viewed as
a node on graph, and specific changes in the given cell
can stimulate other changes only in cells connected to
the original one. Using this approach, it was shown
that the topology of the graph might have a dramatic
effect on the establishment of new mutants in various
cell populations [26–28] and on the rate of evolution
[29]. The application of evolutionary dynamics on
graphs for somatic evolution in multi-cellular organ-
isms also suggested that certain tissue structures could
minimize the onset of cancer [8, 26]. In addition, it
was found that some tissue structures might serve
as amplifiers of selection, i.e., they might increase
the fixation probability of advantageous mutations,
while decreasing the fixation probability of disad-
vantageous mutations [30]. However, a majority of
previous studies of evolutionary dynamics on graphs
investigated only the fixation probability as a primary
characteristic of cancer initiation [25]. Yet, a compre-
hensive understanding of the role of spatial structures
in cancer initiation requires analyzing fixation times
as well [31].

In this paper, we present a theoretical investigation
of cancer initiation dynamics for tissues with different
spatial structures. In our approach, we utilize the
evolutionary dynamics on graphs with different con-
nectivity that mimics the changes in the tissue spatial
structures. We introduce a connectivity parameter
that provides a quantitative measure for describing
different spatial structures. An effective discrete-state
stochastic description of the cancer initiation process
is developed. This allows us to explicitly evaluate the
fixation times and the fixation probabilities using a
method of first-passage probabilities. Our theoretical
calculations suggest that for homogeneous cellular
tissues varying the spatial structures does not affect
the fixation probabilities, while the fixation times can
be strongly modified. The theoretical model explicitly
proposes that the risk of the cancer can be lowered by
significantly delaying the onset of tumor formation
via properly modifying the spatial structures of the
tissue.

1. Theoretical method

Let us consider a tissue compartment with originally
N normal stem cells that can divide and disappear
while keeping the total number of cells constant to
reflect a homeostasis that is observed in healthy tissues
[1, 3, 24]. Please note that tissues typically also have
other non-stem cell, known as progenitor cells, that
can differentiate only few times. In contrast, stem cells
can differentiate indefinitely. These progenitor cells

do not participate in homeostatic equilibrium, and
most probably they are less relevant for the tumor
formation. For this reason, in our theoretical analysis
we do not take them into account.

To better understand the role of spatial structures,
we consider two specific examples of tissues with
different structures, as shown in figure 1. In the first
case, the tissue can be organized as a one dimensional
chain in which each cell can influence only its two
nearest-neighbor cells: see figure 1(a). However, in a
different arrangement of cells, which can be viewed
as effectively two-dimensional sheet as shown in
figure 1(b), each cell can influence four of its nearest-
neighbor cells. Now, let us assume that a single cell
becomes mutated (shown in red in figure 1), and
it can divide faster than the normal wild-type cells
(shown in green in figure 1). An important difference
between the two structural arrangements is that in the
one-dimensional tissue the offspring of the mutated
cell can replace one of the two neighbors (shown in
yellow in figure 1). However, for the two-dimensional
tissue, because the mutated cell is connected to four
neighbors, its offspring can replace four cells. Multi-
ple other tissue spatial structures might be realized.
One may ask then the following questions: in which
spatial configuration the fixation probability of the
mutated cell is higher? Which structures would also
lead to faster fixation dynamics of the mutated cells
and why?

To answer these questions and to understand bet-
ter the role of tissue spatial structures in lowering the
risk of cancer development, we consider a theoretical
model presented in figure 2(a). There are N stem
cells in the tissue that can be viewed as nodes in
a directed graph. Before cancer strikes the tissue,
the system is in homeostasis, which means that the
total number of stem cells is always fixed [15, 24].
Each cell is connected to its l (l = 1, 2, . . . , N − 1)
neighbors. To describe the evolutionary dynamics in
the system, we adopt a Moran process on graphs
[26]. This means that if the ith cell is replicated, then
with the probability 1/l one of the cells from i + 1 to
i + l will be immediately removed to keep the total
number of cells in the tissue constant: see figure 2(a).
In our theoretical approach, the homogeneous tissue
is viewed as a directed graph where links identify
possible changes (cell removals) that might happen
after the cell divisions.

It is important to note that in our model all cells
are identical and have the same connectivity. One
can see that the parameter l reflects the local spatial
structure of the real tissue. Then changing the value of
l but keeping the same topology of the graph and the
same total number of cells provides a convenient way
to quantitatively probe the effect of spatial structures.
This is the main idea of our theoretical approach.
Here topology means a specific symmetry of the
directed graph. In this paper, we only consider the
graphs where all nodes are identical, but other graph
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Figure 1. A schematic illustration of the spatial organization of cell populations in tissues. For each structure, all individual cells
have the same number of neighbors. Red cells indicate the cells with mutations, yellow cells describe the cells that might be
affected soon because they are the neighbors of already mutated cells, and green cells are those where changes are not happening
at the given moment. (a) Cells are arranged as a one-dimensional system such that each cell has at most two nearest neighbors.
(b) Cells are arranged as a two-dimensional system such that each cell has at most four nearest neighbors.

Figure 2. (a) Schematic view of tissue as a directed graph where cells are the nodes and arrows show the directions of possible cell
removals after the replication at the given cell. The mutation at site 1 (red circle) will affect one of l sites 2, . . . , l + 1 that are
shown as yellow circles. (b) Corresponding discrete-state stochastic model of evolutionary dynamics for a single mutation fixation
in the system.

symmetries can also be investigated. In addition, it
can be concluded that the model with l = 1 describes
an effective one-dimensional tissue structure, while
the models with l = N − 1 or l = N (the graph where
every cell is connected with another one and with
the possibility of self-removal) correspond to well-
mixed effectively three-dimensional tissues. Varying
the connectivity between l = 1 and l = N will allow
us to continuously test the cancer initiation dynamics
on all possible spatial structures of the tissue.

To investigate the cancer initiation dynamics in the
tissues with different spatial structures, we start with
a single mutation that is taking place at t = 0 at some

randomly chosen cell. Since the mutation rates in real
systems are very low [15, 32–34], it is assumed that
evolutionary dynamics in the system is accomplished
only via stem cells replications and removals with a
condition of keeping the total number of cells equal
to N at all times. In our model, the normal cells can
divide with a rate b = 1, while the mutated cells divide
with a rate rb = r. The parameter r, known as a fitness
parameter, plays an important role in the cancer initi-
ation dynamics. Since it reflects the overall physiologi-
cal changes in the mutated cell in comparison with the
normal cell, it specifies how faster the mutated cells
can replicate in comparison with the normal cells.
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Generally, advantageous, neutral and disadvantage
mutations are correspondingly described by r > 1,
r = 1, and r < 1. We assume that when all stem
cells in the tissue become mutated, which is called a
mutation fixation, this corresponds to a tumor forma-
tion event and it completes the cancer initiation. As
we already discussed above, the tissue compartment
may also contain the progenitor cells [35]. But it is
assumed in our theoretical approach that they are
not participating in the processes that lead to the
formation of tumor.

Now we can apply a method of stochastic map-
ping to obtain a comprehensive description of cancer
initiation dynamics [22–24]. The idea here is that
at any moment the overall state of the tissue can be
specified by a single parameter n that corresponds
to having n mutated and N − n normal cells. Then
the dynamics in the system can be viewed as a set
of stochastic transitions between discrete states of the
tissue, as shown in figure 2(b). From the state n the
tissue can transform into the state n + 1 with a rate
an, and this corresponds to increasing the number
of mutated cells by one. From the state n the tissue
can also transition into the state n − 1 with a rate
bn, and this corresponds to decreasing the number
of mutated cells by one. The tissue might completely
remove all mutations: this happens with a rate b1

from the state 1. When the system reaches the state
N (from the state N − 1 with a rate aN−1), all cells in
the tissue become mutated and this corresponds to the
mutation fixation (figure 2(b)).

Mapping the evolutionary dynamics of the tissue
to a set of stochastic transitions between discrete states
allows us to quantitatively characterize the cancer
initiation dynamics by applying a method of first-
passage probabilities [22–24]. More specifically, one
can introduce a first-passage probability density func-
tion Fn(t) that is defined as the probability of reaching
the state N (fixation) for the first time at time t if at
t = 0 the system started in the state n (see figure 2(b)).
The temporal evolution of these functions is governed
by a set of so-called backward master equations,
[36, 37]

dFn(t)

dt
= anFn+1(t) + bnFn−1(t) − (an + bn)Fn(t),

(1)
with initial condition FN(t) = δ(t), which means
that if we start in the state n = N the fixation is
immediately accomplished. As explained above, the
parameters an and bn are transition rates between dif-
ferent stochastic states of the system: see figure 2(b).
The first-passage probability densities provide a full
description of the fixation dynamics. We are inter-
ested in two important quantities that characterize
the cancer initiation dynamics. The first one is fixa-
tion probability which is defined as πn =

∫∞
0 Fn(t)dt.

Another important property is mean first-passage
time, Tn =

∫∞
0 tFn(t)dt/πn, which gives mean fixa-

tion time for a mutation.

To obtain explicit expressions for dynamic prop-
erties of cancer initiation in tissues with different
spatial structures, one has to specify the effective
transition rates an and bn between the corresponding
discrete states of the system. This can be easily
done for small systems. In supporting informa-
tion (https://stacks.iop.org/PB/15/056003/mmedia),
we provide exact solutions for cancer initiation
dynamics for N = 3 and N = 4, which are also fully
supported by Monte Carlo computer simulations of
the corresponding systems. For real biological tissues,
however, the number of stem cells is much larger,
N � 105–109 [6, 38]. While we were not able to
solve the model for general values of l and N, ana-
lytical results are available for some limiting cases
corresponding to l = 1, l = N − 1 and l = N. For
intermediate values of the connectivity parameter,
1 < l < N − 1, we explored Monte Carlo computer
simulations to obtain the description of the cancer
initiation dynamics.

2. Results and discussion

Let us consider explicitly the limiting cases of tissue
structures, which are presented in figure 3, for which
full analytical solutions can be obtained, as explained
in the supporting information. For l = 1, we have
a one-dimensional closed chain of cells which is
illustrated in figure 3(a). It can be shown that in this
case (see the supporting information) the effective
transitions rates are equal to

an = r, bn = 1. (2)

Then the fixation probability is given by,

π1 =
1 − 1/r

1 − 1/rN
. (3)

The mean fixation time for the system with l = 1 can
be explicitly evaluated (see the supporting informa-
tion), and it is given by

T1(l = 1) =

[
1 + r−N

(1 − r−N)(r − 1)

]
N − 1 + r

(r − 1)2
.

(4)
For a very large number of cells in the tissue (N →∞)
and r �= 1, this expression simplifies into

T1(l = 1) � N

|r − 1| ; (5)

while for N � 1 and r = 1 we have

T1(r = 1) � N2

6
. (6)

These results for the mean fixation times can be
explained using the discrete-state stochastic scheme
of the cancer initiation process from figure 2(b). For
r �= 1, the process can be viewed as a biased random
walk with the bias in the direction of the mutation
fixation for r > 1 (to the right in figure 2(b)) and the
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Figure 3. Schematic representations of the stochastic models for cancer initiation dynamics for limiting spatial structures:
(a) l = 1, and (b) l = N − 1.

bias in the direction of the mutation elimination for
r < 1 (to the left in figure 2(b)). This explains the
linear dependence of the mean fixation time on the
size of the system since the dynamics can be viewed as
a driven motion in the space of discrete cellular tissue
states. However, for r = 1, the process is an unbiased
random walk, leading to quadratic dependence of
mean fixation times on the size of the system.

In the opposite limit of high connectivity
(l = N − 1, which is shown in figure 3(b), and
l = N), the dynamics of cancer initiation can be also
explicitly analyzed. In these cases, we have the fol-
lowing effective transition rates in the corresponding
stochastic schemes from figure 2(b), as explained in
the supporting information and in reference [22],

an(l = N − 1) =
rn(N − n)

N − 1
,

bn(l = N − 1) =
n(N − n)

N − 1
,

(7)

and

an(l = N) =
rn(N − n)

N
, bn(l = N) =

n(N − n)

N
.

(8)
One can see that the corresponding transition rates
differ only by a constant factor that depends on the
size of the system,

an(l = N) =
N

N − 1
an(l = N − 1),

bn(l = N) =
N

N − 1
bn(l = N − 1).

(9)

However, the full Moran process in the well-mixed
system (l = N) has been already fully investigated
[22], allowing us to obtain a comprehensive descrip-
tion of the fixation dynamics in high connectivity
limit.

One can easily conclude that the fixation prob-
abilities are the same for l = N − 1 and l = N, and
they also equal to the case for l = 1, as given by
equation (3). Actually, it can be shown generally

that the fixation probability does not change with
varying the spatial structures for homogeneous tissue
models [26]. This is our first important result: for
homogeneous tissues varying the spatial structures
does not decrease the probability of getting the tumor.

The fixation time for the model with l = N − 1 is
given by [22]

T(l = N − 1) =
N + 1

b

N−1∑
n=1

1

n(N − n)

(
rn − 1

r − 1

)

×
(

rN−n − 1

rN − 1

)
. (10)

In the limit of very large N, it takes the following form
[22],

T(l = N − 1) � 1

r
(

1 − 1
rN

)
[

Ei(− ln r)

ln r

(
1 − 1

r

)

+
2

ln r
(γ + ln [N ln r])

]
, (11)

where Ei(x) = −
∫∞
−x

e−z

z dz is the exponential integral,
and γ is the Euler–Mascheroni constant.

For intermediate values of the connectivity
parameter, 1 < l < N − 1, we were not able to
explicitly determine the transition rates in the
discrete-state stochastic description, and for this
reason Monte Carlo computer simulations have been
utilized to evaluate the fixation mutation dynamics.
The results are presented in figure 4. One can see
that for the fixed value of the fitness parameter r,
increasing the connectivity always lowers the mean
fixation times. This can be explained by noticing
that there are more pathways to fixation for larger
values of l. On each such pathway, the bias to go in the
direction of fixation is the same and equal to r, leading
to the independence of the fixation probability on
the degree of connectivity. The fixation dynamics,
however, is accelerated because there are more ways
to reach the final state of fixation. Similarly, for
the specific spatial structure (fixed l) increasing the
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Figure 4. Mean fixation times as a function of the connectivity parameter l and fitness parameter r: (a) N = 100 and
(b) N = 200. Red horizontal and vertical lines separate different dynamic regimes as explained in the text.

fitness for the mutated cells accelerates the fixation
dynamics. This can be easily explained by the fact
that for larger r the system reaches faster the fixation
because of the larger bias.

The results for mean fixation times also indi-
cate that there is a critical value of the connectivity
parameter l = lc above which the dynamics becomes
independent of l: see right upper rectangles in figure 4.
This can be explained by again invoking the discrete-
state stochastic scheme in figure 2(b). The last step
before the mutation fixation is the transition from the
state N − 1 to the state N with the rate aN−1. It can be
argued that for all possible values of l and N we have
aN−1 = r. It seems that increasing the connectivity
lowers the arrival time to the state N − 1, if the fitness
parameter is large enough, making the transition
N − 1 → N to be rate-limiting. Then the further
increase in the parameter l will not affect the mean
fixation time which will be mostly defined by the
times to cross this rate-limiting step.

The main result of our theoretical analysis is that
increasing the dimensionality of the cellular tissue
from the effectively one dimensional to the effectively

three-dimensional accelerates the fixation dynam-
ics. Since we have the explicit results for limiting
spatial structures, the acceleration in the mutation
fixation dynamics can be explicitly evaluated using
equations (5), (10) and (11),

a =
T1(l = 1)

T1(l = N − 1)
. (12)

Figure 5 exhibits the results of our theoretical cal-
culations, and one can clearly see an almost linear
dependence of the acceleration as a function of N.
This is because for N � 1 the acceleration asymptot-
ically behaves as a ∼ N/ln(N) for r > 1, which for
real tissues with N ∼ 105 –109 would translate into the
acceleration a ∼ 104 –108.

Our theoretical approach predicts that modifying
the spatial structures of the tissues might strongly
influence the cancer initiation dynamics. This is
because changing the number of neighboring cells
that can be affected after the cell division at the given
cell modifies the dynamics of stochastic processes
in the system that might lead to mutation fixation.
Importantly, this provides a specific mechanism of

6
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Figure 5. The ratio of fixation times versus N.

how tissue might lower the risks of tumor formation.
We suggest that the nature could tune the tissue spa-
tial structure via different regulation mechanisms to
significantly delay the times of the tumor formation.

3. Summary and conclusions

In this paper, we presented a theoretical investigation
on the role of tissue spatial structures in the formation
of tumors. In our approach, the tissue is considered
as network of cells and different spatial structures
are mimicked by varying the connectivity in this
network. By employing a Moran process on graph
to evaluate the evolutionary dynamics in tissues, we
evaluated the dynamics of the mutation fixation in
the system where after the single mutation appear-
ance only cell replications and removals are taking
place. For our specific calculations, we mapped the
transformations in the tissue to a set of stochastic
transitions between different cellar states of the tissue.
A method of first-passage processes was utilized then
to explicitly evaluate the fixation probabilities and
fixation times for different spatial arrangements and
different rates of replications of the mutated cells. Our
calculations show that for homogeneous tissues vary-
ing the spatial structures does not affect the fixation
probability, while a strong effect is observed for the
mean fixation times. The slowest fixation dynamics
is observed for effectively one-dimensional tissues,
while the fastest fixation dynamics is predicted for the
effectively three-dimensional well-mixed tissues. It is
also found that there is a critical connectivity param-
eter that separates two different dynamic regimes:
in one of them the fixation dynamics depends on
the spatial structures and in another one it becomes
independent of the spatial details. These theoretical
results are explained using the effective discrete-state
stochastic schemes for underlying processes. Based
on these results, it is argued how specifically tissues
might minimize the danger of the cancer. We predict
that varying the spatial structure will not decrease
the probability of cancer, but it might significantly

increase the times when the tumor forms. Our the-
oretical analysis provides new insights on the micro-
scopic origin of complex phenomena associated with
the appearance of cancer in healthy tissues.

Although our theoretical method provides a phys-
ically reasonable approach to quantitatively evalu-
ate the danger of cancer initiation, it is important
to discuss its limitations and potential extensions.
Our strongest simplification is that the tissue is fully
homogeneous and all cells are identical. In real sys-
tems, heterogeneity is one of the main hallmarks
of normal cellular tissues. It will be important to
take into account this effect. A possible way to do it
is to consider graphs with more complex topology
and with non-uniform connectivity parameters [26].
Another assumption in our theoretical study is that
the fitness parameter r is always constant, while in
more realistic systems one could expect that r might
change with time due to the accumulation of phys-
iological changes in the system with increasing the
number of mutated cells. In addition, we do not
discuss the microscopic origins of connectivity, i.e.,
why the specific changes in the given cell (chemical,
mechanical, etc) due to the cell division will force
the removal of other specific cells. It is important
to note that cell–cell interactions play an important
role in the development of tumors [39]. It will be
interesting to explore these and other possibilities in
more advanced theoretical investigations of cancer
initiation processes.
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