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Abstract
Successful biological development via spatial regulation of cell differentiation relies on the action of
multiple signalingmolecules that are known asmorphogens. It is nowwell-established that signaling
molecules create non-uniform concentration profiles,morphogen gradients, that activate different
genes, leading to patterning in the developing embryos. The current view of the formation of
morphogen gradients is that it is a result of complex reaction-diffusion processes that include the
strongly localized production, diffusion and uniformdegradation of signalingmolecules. However,
multiple experimental studies also suggest that the production ofmorphogen inmany cases is
delocalized.We develop a theoreticalmethod that allows us to investigate the role of the delocalization
in the formation ofmorphogen gradients. The approach is based on discrete-state stochasticmodels
that can be solved exactly for arbitrary production lengths and production rates ofmorphogen
molecules. Our analysis shows that the delocalizationmight have a strong effect onmechanisms of the
morphogen gradient formation. The physical origin of this effect is discussed.

1. Introduction

One of the most important fundamental biological
processes is a formation of a multi-cellular organism
from a set of genetically identical cells. The central role
in this process is played by morphogens, which are
signaling molecules that control the fate of biological
cells [1–9]. It is now widely accepted that these
signaling molecules develop non-uniform concentra-
tion profiles, calledmorphogen gradients, that interact
with embryo cells. The idea behind the morphogen
gradients is that different concentrations of signaling
molecules turn on different genes, leading to complex
patterning observed in developed multi-cellular sys-
tems [1, 3, 4]. A significant progress in understanding of
morphogen gradients and how they function has been
achieved in recent years whenmany quantitative investi-
gations have appeared [9–20]. However, despite these
advances, mechanisms of the formation of signaling
molecules profiles remainnot fully understood [7, 8].

Several theoretical ideas were presented to explain
the complex processes associated with the develop-
ment of morphogen gradients [7, 8]. The dominating
view is based on a so-called synthesis-diffusion-

degradation (SDD) model [11, 13, 24]. According to
this approach, the production of signaling molecules
starts at the specific localized region of the embryo,
then signaling molecules diffuse along the cells. In
addition, with equal probability they can be degraded
after binding to specific receptors on the cells. As a
result, exponentially decaying concentration profiles
are developed at long times. Since qualitatively similar
behavior is observed in many experimental systems,
the SDD models have been widely utilized for under-
standingmorphogen gradients [11–16, 21, 24].

The majority of investigations of morphogen gra-
dients formation that use the SDD models postulate
that the signalingmolecules are produced from a shar-
ply localized source [25–28, 30–33]. However, experi-
mental observations suggest that in many biological
systems the production region of the morphogens is
delocalized [11]. Morphogens are protein molecules
that are synthesized from the corresponding RNA
molecules. So the production of these signaling mole-
cules to a large degree is determined by the distribu-
tion of the corresponding RNA molecules. For one of
the most intensely studied systems, the formation of
bicoidmorphogen in an early Drosophila embryo, it is
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known that the maternal RNA molecules are dis-
tributed over the region of size 30–50 μm, while the
total length of the embryo is of order of 400 μm [11].
Obviously, in this case the production area cannot be
defined as sharply localized. This raises many queries
about the role of the source production in the develop-
ing morphogen gradients. Specific questions include:
why is the synthesis of signalingmolecules delocalized,
why is it not produced over the whole embryo, and
how does the morphogen gradient depend on the spa-
tial distribution of the source and on the synthesis
rate? At the same time, although some of these issues
were discussed, a comprehensive theoretical analysis
of the delocalization of signalingmolecules synthesis is
not available [21, 22, 23, 25–28].

Experimental investigations suggest that specific
distribution of maternal RNA molecules within cells
controls the synthesis of morphogen molecules [29].
Three distinct mechanisms of RNA localization have
been identified, including the protection from RNA
degradation over the specific regions, diffusion of
RNA molecules coupled with entrapment at specific
locations and directed transport by motor proteins
along cytsokeleton filaments [29]. The first mechan-
isms leads to mostly uniform production distribution
of signaling molecules over finite regions, while the
second and the third mechanisms produce mostly
exponential source distributions.

In this paper we present a theoretical investigation
on the role of source production in the development of
morphogen gradients. A theoretical approach for ana-
lyzing the formation of signalingmolecules concentra-
tion profiles with arbitrary delocalization length and
production rates is developed. Ourmethod is based on
discrete-state stochastic models that can be explicitly
solved for arbitrary sets of parameters. We investigate
several possible cases of the formation of signaling
molecules concentration profiles to analyze the role of
the synthesis of the signaling molecules. It is shown
that the production might have a strong impact on the
development ofmorphogen gradients.

The paper is organized as follows. In section 2, a
general discrete-state stochastic SDD model with an
arbitrary source distribution is presented and ana-
lyzed. In section 3, three different distributions are
explicitly analyzed as illustrative examples. In this
section the stationary profiles and local accumulation
times (LATs) are calculated. Finally, in section 4, the
important biophysical implications of the presented
results are discussed and conclusions are given.

2. Theoreticalmethod

We start our analysis by considering a general discrete-
state stochastic SDD model in one-dimension as
illustrated in figure 1. Our system is semi-infinite. It is
assumed that the synthesis of the morphogen particles
is taking place only in the interval consisting of L sites:
see figure 1. Inside the source region, signaling

molecules are produced at any site m ( ⩽ ⩽m L0 )
with a corresponding rate Qm, and the total produc-
tion rate is equal to = ∑ =Q Qm

L
m0 . From any site

morphogens can jump to nearest-neighbors left or
right sites with a rate u. The particles might be
degraded at any site with a rate k. One can define a
function P n t m( , ; ) as the probability to find the
morphogen at the site n at time t if the particle can only
be produced at the sitem ( ⩽ ⩽m L0 ). The temporal
evolution of this probability is governed by the
followingmaster equations:

δ= + −

+ +
− +

P n t m

t
Q u P n t m

P n t m

u k P n t m

d ( , ; )

d
[ ( 1, ; )

( 1, ; )]

(2 ) ( , ; ) (1)

m m n,

for >n 0, and

δ= +

− +

P t m

t
Q uP t m

u k P t m

d (0, ; )

d
(1, ; )

( ) (0, ; ) (2)

m0 ,1

for n = 0. Here we use the fact that δ = 1m n, form = n,
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At long times we have = 0P n t m
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equations can be solved analytically, yielding the fol-
lowing stationary probability functions
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for ⩽m n. In these expressions, the subscript < >( )
corresponds to the case of ⩽n m >n m( ), and a
parameter x ( < <x0 1) is defined as

Figure 1.A schematic view of the one-dimensional discrete-
state SDDmodel for the formation of themorphogen
gradients. The production ofmorphogens is distributed over
an interval of length L. Signalingmolecules are produced at
the sites ⩽ ⩽m L1 (shown in red)with a rateQm. Particles
can also diffuse along the lattice to the neighboring sites with a
rate u, or theymight be degradedwith a rate k.
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= + − +( )x u k k uk u2 4 (2 ). (5)2

This approach is very useful since it allows us to
obtain the total concentration profiles from all produ-
cing sites using a kind of a superposition principle. In
other words, the total probability P n t( , ) of finding
the particle at site ⩾n 0 at time t can be expressed as a
sumof the probabilities P n t m( , ; )with production at
the specific site m ( ⩽ ⩽m L0 ). This is because the
synthesis processes at each site are independent of each
other. The general equations for concentration pro-
files are given by

∑ ∑
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The explicit expressions can be easily obtained by
employing equations (3) and (4).

One of the main goals of morphogen gradients is
to transfer the information. Most probably, it can be
done well if the system is close to the stationary condi-
tions. Then the important characteristics of morpho-
gen gradients are times needed to achieve the steady
state at specific spatial locations. These times are
known as LAT, and a theoretical framework for com-
puting these quantities has been developed recently
[25]. It can be done by utilizing local relaxation func-
tionswhich are defined as

= −
= −

= −

R n t
P n t P n

P n t P n

P n t

P n

( , )
( , ) ( )

( , 0) ( )

1
( , )
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. (7)

s

s
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( )

( )

( )

The physical meaning of these functions is that they
represent the relative distance to the stationary state: at
t = 0 the distance is one, while at steady state it is equal
to zero. The explicit formulas for the local accumula-
tion time can be derived then via Laplace transforma-
tions of the local relaxation function,

∫= ∞ −R n s R n t t˜( , ) ( , )e dst
0

[25]

∫= − ∂
∂

= =
∞

−t n t
R n t

t
t R n s( )

( , )
e d ˜( , 0). (8)st

0

3. Illustrative examples

Our approach allows us to analyze the formation of
morphogen gradients for arbitrary length of the
production region and for arbitrary production rates.
To explain it better, we illustrate the method by doing
explicit calculations for three different production
scenarios, which might be relevant for the morphogen
gradients formation in real cellular conditions.

3.1. Single localized source
As a first example, we start with the case when the
source of signaling molecules is localized at the site

= ′m m

δ= − ′( )Q Q m m . (9)m

From equations (3) and (4)we directly obtain
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For ′ =m 0, as expected, we recover the results
obtained earlier [31]

=
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4
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2

These expressions indicate that the signaling mole-
cules profiles are exponentially decaying functions of
the distance from the source for > ′n m , and the decay
length, λ = − x1 ln , is independent of the production
rate Q. The resulting morphogen gradients are pre-
sented in figures 2 and 3 for the case of ′ =m 0 with
various diffusion and degradation rates.

From relations (7) and (8) the explicit expressions
for the LATs can be evaluated. It is found that LAT are
given by
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Again, for the source localized at the origin, ′ =m 0,
our results reproduce the already known expression
[31]
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LAT for the formation of morphogen gradients with
′ =m 0 for various diffusion and degradation rates are

presented in figures 4 and 5. One can see that the LATs
for the sharply localized source linearly grow with the
distance from the source. This can be explained by
invoking the idea that the degradation acts as an
effective potential that pushes the signaling molecules
away from the source [31], leading to effectively driven
diffusion ofmorphogens in the system.

3.2. Uniformly distributed production over the
finite interval
In another example, we consider uniformly distribu-
ted production of signaling molecules along a finite
interval of length L. This distribution can be repre-
sented as follows

Figure 2. Steady-state density profiles as a function of the distance from the origin. Solid curves correspond to the single localized
source at ′ =m 0. Dashed curves correspond to uniformproduction rates along the finite interval. Dotted curves correspond to
exponentially decaying production rates along the semi-infinite interval. λ=L 10 is assumed for the single localized and uniform
productions, while λ λ= 10s and → ∞L are assumed for the exponentially distributed productions. (a) Fast degradation rates with
k=1, u=0.01; (b) comparable diffusion and degradation rates with = =k u 1; and (c) fast diffusion rateswith k=1, u=100.
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In this case, the synthesis rates are the same for all
production sites. Applying equation (6), one can
obtain explicit expressions for the stationary profiles.
They are different depending on the position of the
lattice site with respect to the production region.
Inside the production areawe have
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The maximal value of the concentration is achieved
for n=0

=

=
− +

− + + +

<

+

( )
( )

P n

Q x

x k k uk L

( 0)

2 1

( 1) 4 ( 1)
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The concentration profiles normalized by this max-
imal value are presented in figures 2 and 3.

A stationary-state behavior of the morphogen
gradients with the uniform production along the
finite interval can be generally described in the
following way. The concentration of signaling
molecules is large and almost constant in the pro-
duction region, and then it exponentially decays
outside of the synthesis area. The transition
between these two regimes depends on the para-
meters of the system. Decreasing the diffusion
and/or increasing the degradation rate makes this
crossover sharper. In addition, the transition is
more abrupt when the production length L is

Figure 3. Steady-state density profiles as a function of the distance from the origin. Red curves correspond to the single localized
source at ′ =m 0. Green curves correspond to uniformproduction rates along thefinite interval. Blue curves correspond to
exponentially decaying production rates along the semi-infinite interval. λ λ= =L 10s is assumed for the single localized and
uniformproductions, while λ λ=s and → ∞L are assumed for the exponentially distributed productions. (a) Fast degradation rates
with k=1, u=0.01; (b) comparable diffusion and degradation rateswith = =k u 1; and (c) fast diffusion rates with k=1, u=100.
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much larger than the decay length λ (see
figure 2 where λ=L 10 is utilized), while for
comparable L and λ (see figure 3 where λ=L is
utilized) the concentration profile decays more
smoothly.

It is interesting to analyze the behavior of the pro-
files in the asymptotic limit of very large production
intervals, → ∞L ,

→ ∞ ≃ +

− +
P n L

Q x

L x k uk
( , )

(1 )

(1 ) 4
. (20)s( )

2

This corresponds to the case when the morphogens
are synthesized all over the embryo with the same
production rates. As expected, the concentration
profile becomes uniform, and this is the reason why
there is no dependence on the position n in this
equation. Obviously, the morphogen gradient cannot
be established in such systems, and this is not a realistic
situation for biological development. This might be
the reason why the production region does not occupy
thewhole embryo.

As was discussed above, the LATs for uniform pro-
duction along the finite intervals can be found from
equations (7) and (8). LAT for sites inside the produc-
tion region are given by
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Figure 4. Local accumulation times as a function of the distance from the origin. Solid curves correspond to the single localized source
at ′ =m 0. Dashed curves correspond to uniformproduction rates along thefinite interval. Dotted curves correspond to exponentially
decaying production rates along the semi-infinite interval. λ=L 10 is assumed for the single localized and uniformproductions,
while λ λ= 10s and → ∞L are assumed for the exponentially distributed productions. (a) Fast degradation rates with k=1, u=0.01;
(b) comparable diffusion and degradation rateswith = =k u 1; and (c) fast diffusion rates with k=1, u=100.
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while for the outside regionwe have
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+
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(
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(
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(
)
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( )
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( )
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x
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4

1 4 . (22)

L

L

L L

L

L

L

L

L

L

2

1 2

2
1

2

1 2

2

2

2

2

1 2

⎤
⎦⎥

⎡⎣

⎤
⎦⎥

⎡
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The results for LATs are presented in figures 4 and
5. For the uniform production along the finite interval
the LAT usually consist of two parts. Inside the pro-
duction area LAT is almost constant as a function of

Figure 5. Local accumulation times as a function of the distance from the origin. Solid curves correspond to the single localized source
at ′ =m 0. Dashed curves correspond to uniformproduction rates along thefinite interval. Dotted curves correspond to exponentially
decaying production rates along the semi-infinite interval. λ λ= =L s is assumed for the single localized and uniformproductions,
while λ λ=s and → ∞L are assumed for the exponentially distributed productions. (a) Fast degradation rates with k=1, u=0.01;
(b) comparable diffusion and degradation rateswith = =k u 1; and (c) fast diffusion rates with k=1, u=100.
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the distance from the origin. At the same time, outside
of the production area LAT is linearly growing. Again,
arguments using the role of the degradation as an
effective potential can be employed [31]. Outside of
the synthesis region, the degradation creates the
potential that moves particles away from the produc-
tion area. This effective potential leads to strong biased
diffusion and consequently linearly growing LATs.
This behavior is very similar to the case of the single
localized source discussed above. Inside the synthesis
region the dynamics is different. The degradation is
compensated by synthesis and diffusion from neigh-
boring cells, leading to mostly uniform accumulation
times.

3.3. Exponentially distributed production along the
semi-infinite interval
In the final example, we consider the exponentially
distributed production along the interval of length L.
In this case, the synthesis rates can bewritten as

= −
− +

Q
Q z z

z

(1 )

1
, (23)m

m

L 1

where ⩽ ⩽m L0 and a parameter z ( < <z0 1) is
introduced to characterize the exponential distribu-
tion of synthesis rates. One can see that the relation
∑ == Q Qm

L
m0 is satisfied. We can also define a decay

length λs for this exponential distribution of the
production rates

λ = − z1 ln . (24)s

Detailed calculations of the stationary profiles for
exponentially distributed production rates and for
arbitrary length of the source region are given in the
appendix. Here we report the final results for the case
of the semi-infinite source interval, i.e., in the limit of

→ ∞L

= −

+

×
− − +

− −

+ −

+

− + +

+ + −

+ + + +

( )
( )

( )

P n
Q z

k uk

x zx z x z

x z xz

Q z

k uk

k k uk x

k k uk xz

( )
(1 )

4

( )(1 )

(1 )

4

4

4 (1 )
. (25)

s

n n n n

n

( )

2

1 2 1 2 1

2

2

2

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

The maximal value of the concentration profile is
achieved again for n=0

= = −

− + +( )
P n

Q z

xz k k uk
( 0)

2 (1 )

(1 ) 4
. (26)s( )

2

It is interesting to consider a special limiting case
of this problem when the diffusion along the lattice
cells is much faster than the degradation rate, ≫u k,
while the decay length λs for the exponential produc-
tion rates is also large. This corresponds to a con-
tinuum limit of our problem, and it was already

discussed in the literature [25–28]. In this limit, we
have the following asymptotic relations for important
parameters x and z

λ
≃ −x 1

1
, (27)

λ
≃ −z 1

1
. (28)

s

Using these results, one can easily show that the
equation (25) reduces to the following form

λ
λ λ

λ λ=
−

−λ λ− −

( )
( )P n

Q

u
( ) e e . (29)

s

n
s

n
2

2 2
s

This is exactly the concentration profile obtained
previously in the continuum SDD model with the
exponentially decaying distribution of the production
rates [28].

The normalized concentration profiles for expo-
nentially decaying production along the semi-indite
interval ( ≫L 1) are plotted in figures 2 and 3. For all
sets of the parameters these profiles are monotonically
decreasing functions of the distance from the origin,
although the decay is slower for larger diffusion rates
and/or for smaller degradation rates. This allows one
to increase significantly the range of morphogen
action, as compared to systems with the sharply loca-
lized source, while still keeping the concentration pro-
file of signaling molecules to be non-uniform. As
expected, accelerating the exponential decay of pro-
duction rates (lowering of λs ) diminishes this effect as
one can see by comparing figures 2 and 3. As expected,
for small λs the concentration profiles of morphogen
gradients with exponentially distributed productions
become similar to the morphogen gradients with the
single localized source.

The calculations for LATs for exponentially decay-
ing synthesis of signaling molecules and for arbitrary
production lengths L are also given in the Appendix.
We are interested in the large L values that correspond
to the semi-infinite interval. In this case, we obtain the
following expression for LAT

=
+

− + +

− + + +

× − + +

× − − +

+ − + + −

+
+

− +

+

+ +

+ + + +

+

+ +

(

(

)

( )
( )

( )

( )

)
( )

( )
(

( )

(

t n
n

k uk
k k uk

x zx k k uk

x zx k k uk

x zx z x z

k k uk x zx

uk

k uk
z zx zx

( )
4

4

4

4

)

4

2

4

n n

n n

n n n n

n n

n n n

2

2

1 2

1 2 2

1 2 1 2 1

2 1

2
1 2

⎡
⎣⎢

⎤
⎦⎥

⎡⎣
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− + +

− − + + −

+ + −

+
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+ + − + +
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+ + − + +

− +
+

+ + +

+ +

+
−

−
−

+ +

+ + +

+

+ +

+ +

+ + +

+

+

(

(

)
(

( )

)
( )

( )
( )

( )

)

)

) (
)

( )

(

(

( )

x z k k uk x

zx z x z k

k uk x zx

k uk
k k uk

x zx

x z k k uk x

k k uk x zx z

x z k k uk

x zx
k uk

u k k uk

k k uk
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x

x z

4

(

4

1

4
4

2

2 ) 4

4

) 4

1

4

2 4

4

1
. (30)

n n

n n n

n n

n n

n n

n n n

n

n n

2 1 2 1

2 1 2 1

2 1

2

2

1 2

2 1 2 1

2 1 2 1

2 1 2

1

2

2

2

⎤⎦
⎡
⎣⎢

⎤⎦
⎡
⎣
⎢⎢

⎤
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The results for LAT for the exponentially dis-
tributed production of the morphogens are illustrated
in figures 4 and 5. In all cases the LATs increase with
the distance from the origin, as was found for other
production scenarios of morphogen gradients con-
sidered in this work. The LAT growth is mostly linear
since our arguments about the effective potential due
to degradation can still be applied. But what is differ-
ent from other production mechanisms is the fact that
these times are usually much smaller, especially at
large distances from the origin (larger than L or λs ).
This can be understood if we recall that main con-
tribution to the LATs at given spatial position is due to
the first-passage (arrival) times to this location starting
from the source region [31]. In the exponentially dis-
tributed production of signaling molecules along the
semi-infinite interval the source is everywhere, so that
the contribution of the arrival times is mostly negli-
gible. This significantly lowers the time to reach the
stationary-state concentration at the given spatial
location.

4. Summary and conclusions

We developed a theoretical framework for investigat-
ing the role of synthesis of signaling molecules in the
formation of concentration profiles that are critically
important in the biological development. Our analysis
is based on discrete-state stochastic models for com-
plex reaction-diffusion processes associated with the
formation of morphogen gradients. It allows us to test
the effect of the production in systems with arbitrary
source lengths and synthesis rates by calculating
stationary profiles and the times to achieve the
stationary concentrations at specific locations. By

analyzing several different systems we found that the
spatial distributions of the sources and the production
speeds have a strong effect in the development of
morphogen gradients.

To understand the role of the production one
might recall that there are two main requirements for
successful function of the morphogen gradients in the
biological systems [7]. The first one is to deliver the
information to as many as possible embryo cells about
their future fates. This can be done if observable con-
centrations of signaling molecules can be found as far
as possible from the source. The second function is to
ensure that different genes can be controllably turned
on in the neighboring embryo cells. This can be
accomplished by producing sharp boundaries in the
concentration profiles of signaling molecules at spe-
cific locations. Our analysis suggests that the morpho-
gen gradients produced with the single localized
sources generally are not able to satisfy these require-
ments. At the same time, the morphogen gradients
developed from the delocalized sources with various
synthesis rates are capable to do all these tasks
successfully.

Furthermore, the presented theoretical method
provides a simple physical-chemical explanation on
the role of delocalizations in the formation of signaling
molecules concentration profiles. The delocalization
effectively leads to faster diffusion along the produc-
tions regions, and it also shortens the arrival times to
specific locations. As a result, the range of morphogen
gradients with delocalized sources increases, while the
times to reach the stationary states at specific locations
become smaller. All of these properties make the mor-
phogen gradients more efficient and robust. At the
same time, increasing the production area to thewhole
embryo is not reasonable since it will be difficult to
sustain the non-uniform concentration profiles.

Although our theoretical approach gives a clear
physical picture on the effect of production in the
development of morphogen gradients, one should
note that ourmodel is oversimplified. It neglectsmany
crucial factors and processes in the biological develop-
ment such as a three-dimensional nature of the
embryo, inhomegeneity and complex cooperative
mechanisms in the degradation, as well as variable
mechanical responses of the embryo cells. It will be
critically important to test the proposed theoretical
picture in experimental studies and in more advanced
theories.
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Appendix

In this appendix we present detailed calculations of the
stationary profiles and LATs for the exponential
distribution of production rates. Using a superposi-
tion principle, the total stationary profile can be
written as

∑

∑

∑

=
+ + +

× + +

+ − + +

+ + +

+ − + +

+ + +

×

<

=
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=
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( )
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for the sites inside the production area. For the sites
outside of the productionwe have

∑

∑

=
+ + +

+ +

+ − + +

>

=

−

=

( )

( )

( )

P n
x

k uk k k uk

k k uk Q x

k k uk Q x

( )
4 4

4

4 . (32)

s
n

m

L

m
m

m

L

m
m

( )

2 2

2

0

2

0

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

The summations over m for different intervals can be
performed in the followingway
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Substituting these expressions into equations (31) and
(32), we obtain for the sites inside the source region
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while for the outside regionwe have
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The corresponding expressions for LATs for the
source region can bewritten as
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wherewe defined new auxiliary functions
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Similar calculations for LAT for the region outside
of the source area produce
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where another set of auxiliary functions is introduced
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Taking the limit of → ∞L in equations (37) and
(43) we obtain the expressions for the stationary-state
profiles and the LATs used in the main text of the
paper.
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