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Abstract
The formation and growth of multi-cellular organisms and tissues from several
genetically identical embryo cells is one of the most fundamental natural
phenomena. These processes are stimulated and governed by multiple biolo-
gical signaling molecules, which are also called morphogens. Embryo cells are
able to read and pass genetic information by measuring the non-uniform
concentration profiles of signaling molecules. It is widely believed that the
establishment of concentration profiles of morphogens, commonly referred as
morphogen gradients, is a result of complex biophysical and biochemical
processes that might involve diffusion and degradation of locally produced
signaling molecules. In this review, we discuss various theoretical aspects of
the mechanisms for morphogen gradient formation, including stationary and
transient dynamics, the effect of source delocalization, diffusion, different
degradation mechanisms, and the role of spatial dimensions. Theoretical
predictions are compared with experimental observations. In addition, we
analyze the potential alternative mechanisms of the delivery of biological
signals in embryo cells and tissues. Current challenges in understanding the
mechanisms of morphogen gradients and future directions are also discussed.

Keywords: morphogen gradient, biological signaling, reaction–diffusion
processes

(Some figures may appear in colour only in the online journal)

1. Introduction

The development of various living organisms from an initially very small group of identical
embryo cells is one of the most fascinating and complex processes in biology [1–4]. A critical
stage in biological development is a pattern formation during which the eventual fate of cells
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becomes determined at different times and different spatial positions. Several classes of
biological signaling molecules, known as morphogens, play a central role in the tissue pat-
terning and organ formation in all living systems [1–5]. The term ‘morphogen’ was first
introduced by Turing in his seminal paper on the mathematical modeling of biological pattern
formation [6]. In this pioneering work, Turing demonstrated that diffusion and chemical
reactions involving several species can produce spatial patterns in an array of cells, which are
very similar to patterns observed in nature. Recent experiments have provided a direct ver-
ification for Turing’s theory in artificial chemical systems [61]. The next critical step was
made by Wolpert, who introduced the idea of positional information [4, 13]. He argued that
the developmental pattern formation is a result of the interpretation of spatial positions
decoded in external signals from biological signaling molecules. Cells obtain the spatial
information by somehow ‘measuring’ the concentration of morphogens around them. Dif-
ferent genes are turned on or off depending on several concentration thresholds, eventually
producing morphologically different cells. Finally, Crick realized that dynamic aspects of the
creation of morphogen profiles are also important for the proper development of tissues and
organs [5]. He emphasized the important role of diffusion because of a limited time window
for development processes. These three fundamental concepts are the foundations of the
modern theory of morphogen gradients [7–10, 12].

Enlightened by these ideas, a large number of experiments on the formation, regulation
and functioning of morphogen gradients has appeared in recent years. They clearly show that
the non-uniform concentration profiles of signaling molecules are responsible for symmetry
breaking, tissue development and organ formation in multi-cellular organisms [7–10, 12, 14–
19, 24–27, 29, 33, 41, 46, 83]. Although these investigations of morphogen gradients were
done on diverse biological systems, most studies focused on two main examples. The first one
is a Drosophila embryo where Bicoid (Bcd) morphogen gradients and the corresponding
patterns were monitored and analyzed [7–9, 16, 27, 33, 46]. The second example is a pattern
formation in vertebrate neural tubes by Sonic hedgehog morphogens [8, 20, 48, 49]. A large
amount of quantitative information has been assembled on these systems which highlight the
importance of morphogen gradients. Another striking observation is that, despite different
evolutionary origins, distinct cell biology and biochemistry, the formation of tissue patterns is
very similar in both organisms [8].

The analysis of developmental processes in different systems suggested the existence of
several universal mechanisms governing the establishment of signaling profiles and their
activities [7–9, 12]. Stimulated by these experimental observations, a large number of
theoretical ideas on the mechanisms of the formation of morphogen gradients have been
proposed [7–10, 12, 21, 21–23, 28, 31, 32, 34–40, 43, 50, 51, 58, 59, 76–78, 80]. Most of
these studies suggest that the establishment of biological signaling profiles in development is
a result of complex physical–chemical processes that include the localized production of
morphogens that can later diffuse and be removed from the cellular medium by various types
of biochemical transitions [7–10, 12]. Based on some experimental observations
[64, 65, 67, 68, 70, 71, 74], the possibility of alternative mechanisms of the direct delivery of
morphogens to the target cells utilizing dynamic cellular extensions called cytonemes was
predicted [11, 64, 77]. It has been argued that the complex environment of the embryo
systems might prevent the free diffusion from establishing the distinguishable morphogen
gradients at different regions, implying a different mechanism of the biological signal
transduction [11, 64].

In this paper, a brief overview of the mechanisms of the development of morphogen
gradients is presented. Because of the large number of excellent reviews on morphogens [7–
10, 12], we concentrate here only on the theoretical aspects of the formation of biological
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signaling profiles. For this reason, the important subjects, such as how cells interpretate the
graded signals and biochemical regulations of these signals, are not discussed [12, 47].
Furthermore, in analyzing the complex processes associated with the establishment of mor-
phogen gradients, we benefited from multiple discussions with many researchers. But this
review presents our subjective view on the field, which might disagree with some existing
descriptions.

2. Development of morphogen gradients via reaction–diffusion processes

Before exploring the mechanisms of the formation of biological signaling profiles, it is
important to describe what these signaling molecules are, which are also known as mor-
phogens. They are protein molecules that are responsible for passing on the information in the
developing embryos as to where and which tissues should appear [7–10, 12]. The time scales
for the pattern formation in biological systems range from 1–2 h in Drosophila to 20 h in
mammals [8], reflecting the differences in cell biology of underlying organisms.

The dominating view in the field is that the morphogen gradients are created by a
complex action of several reaction–diffusion processes [7–10, 12]. Two main theoretical
directions have been explored in clarifying the mechanisms of the formation of signaling
profiles. One of them utilizes a continuum description, while another one is based on more
general discrete-state stochastic analysis of the processes. Below we discuss and compare
both of them.

2.1. Continuum synthesis-diffusion-degradation model

Experiments show that biological signaling profiles are not uniform, as shown in figure 1.
This lead to the formulation of the simplest, and still the most popular, idea on the formation
of morphogen gradients. It is known as a synthesis-diffusion-degradation (SDD) model [7–
10, 12]. It is the most frequently applied model for analyzing multiple systems where the
profiles of signaling molecules are formed [7–10, 12].

Figure 1. A schematic view of the morphogen gradient and its action on embryo cells.
Cells exposed to the morphogen concentration above threshold 1 will activate a ‘red’
gene; cells exposed to the morphogen concentration below threshold 1 but above
threshold 2 will activate a ‘green’ gene; and cells exposed to the morphogen
concentration below threshold 2 will activate a ‘yellow’ gene.
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To describe this model mathematically, let us consider a semi-infinite signaling domain
in which morphogens are produced at the origin, x=0, with a rate Q. They diffuse along the
field of cells with a diffusion constant D or they might be degraded with a rate k. One can
define a function ( )C x t, as the concentration of morphogens at position x at time t. The
temporal evolution of the concentration profile follows from a corresponding reaction–dif-
fusion equation,

( ) ( ) ( ) ( )¶
¶

=
¶

¶
-

C x t

t
D

C x t

x
kC x t

, ,
, , 1

2

2

with the boundary condition at the origin

( ) ( )¶
¶

= -
=

C x t

x
Q

,
. 2

x 0

Assuming that initially there were no morphogens in the system, ( )= =C x t, 0 0, these
equations can be exactly solved at all times, yielding the following concentration profile [23],
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where erfc(y) is the complementary error function, l = D k , and ( )( )C xs is the stationary
profile,
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The SDD model predicts that at large times (  ¥t ) the morphogen gradient is the
exponentially decaying function of the distance from the source with a length scale λ

determined by the ratio of the diffusion and degradation rates. These predictions qualitatively
agree with many observations of morphogen gradients in various systems [16, 19, 24, 27, 46].
However, the application of this model for more quantitative measurements of the dynamics
of the formation of signaling profiles in Bcd led to some controversial results [16]. Experi-
ments suggested that Bcd molecules diffuse relatively slowly with D 0.3 μm2 s−1 [16]. The
most distant location that is still affected by the Bcd molecules is at L 375 μm [34]. Using
the unbiased random walk arguments, one can evaluate how long it takes for the morphogens
to diffuse to this location, t = L D2 40002 min, providing the estimate for the formation
of the Bcd profile in Drosophila embryos. But this contradicts the experimental observation
that the morphogen gradient is created in approximately 90 min in the whole embryo system.
Clearly, there is a discrepancy between these theoretical predictions and what is measured
directly in experiments [16]. Several early attempts to explain this controversy turned out to
be unsuccessful [79].

Progress in resolving this paradox of slow diffusion and fast formation of the morphogen
gradients has been achieved by Berezhkovskii and coworkers who introduced a new method
of analyzing the dynamics [21, 34–36, 43]. They realized that the correct estimate of the times
to establish the morphogen gradient is given by the relaxation times to reach the stationary-
state profiles, which are labeled as local accumulation times (LAT) [34–36]. To obtain LAT,
one has to first define local relaxation functions,

( ) ( ) ( )
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,
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The physical meaning of these functions is that they represent a relative distance to the
stationary state: at t=0 the distance is one, while at the steady state it is equal to zero. The
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function ( )( )-¶
¶

R x t

t

, is the probability density for reaching the stationary state at the position x
at time t. The explicit formulas for the local accumulation time can be derived then via
Laplace transformations of the local relaxation function, ( ) ( ) ò=

¥ -R x s R x t t, , e dst
0

[34],
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For the SDD model, from equations (3) and (5) it can be shown that the relaxation function is
given by
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which leads to a very simple expression for the LAT [34],
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For the Bcd morphogen gradient, using expression (8) along with the estimate of the
decay length l 60 μm and with a better estimation of the diffusion constant D 1 μm2

s−1 [22, 53], the time to reach the stationary state at the most distant boundary was calculated
to be less than 200 min, which is much closer (although still not perfect) to the experimental
values (90 min). The difference between these theoretical predictions and experiments is
probably due to the imprecise measurements of the diffusion constant and the decay length, as
well as due to the oversimplified theoretical assumptions of the strongly localized source
region, as we discuss below in more detail [34]. Thus, the systematic approach to evaluate
LAT as a measure of the dynamics of the formation of morphogen gradients was able to
mostly resolve the paradox of slow diffusion [34]. However, it also raised several funda-
mental questions. Equation (8) indicates a linear scaling as the distance from the source for
the SDD model instead of the expected quadratic scaling for the unbiased random walk
motion since there are no apparent external driving forces in the system. It led to a conclusion
that signaling profiles formed much faster than was previously estimated [34, 45, 57]. But the
mechanism of this acceleration was not clear.

Figure 2. A schematic view of the one-dimensional discrete-state SDD model for the
formation of the morphogen gradients. The production of morphogens is distributed
over an interval of length L. Signaling molecules are produced at the sites  m L0
(shown in red) with rates Qm. The case of m=0 and L=1 corresponds to the source
localized at the origin. Particles can also diffuse along the lattice to the neighboring
sites with a rate u, or they might be degraded with a rate k. Adapted with permission
from [75], copyright 2015 IOP Publishing.
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2.2. Discrete-state stochastic description

During the establishment of the signaling profile, the morphogen molecules are removed from
the medium at specific locations of the cells (usually at receptors), and this implies that the
overall process is intrinsically biochemically discreet. This suggests that the continuum
description of the formation of morphogen gradients is an approximation, and it might not
fully describe these processes at all conditions [57]. For this reason, a more general discrete-
state stochastic framework was introduced [57].

The discrete version of the SDD model is presented in figure 2. It is assumed that each
embryo cell is associated with a lattice site. In the simplest version of the model, the mor-
phogens are produced only at the origin with a rate =Q Q0 (L = 1 case in figure 2). Signaling
molecules can diffuse with a rate u along the lattice. At any position, the morphogen can be
degraded and removed from the system with a rate k. The continuum description is obtained
in the limit of very fast diffusion, u k . To simplify the calculations, a single-molecule
view, according to which the concentration of morphogens at a given site is equivalent to the
probability of finding the signaling molecule at this location, was adopted [57]. A function
Pn(t), defined as the probability of finding the morphogen at site n at time t, was introduced
[57]. The temporal evolution of this probability is governed by the following master
equations,

( ) ( ) ( ) ( ) ( )= + - +
P t

t
Q uP t u k P t

d

d
90

1 0

for n=0; and

( ) [ ( ) ( )] ( ) ( ) ( )= + - +- +
P t

t
u P t P t u k P t

d

d
2 10n

n n n1 1

for >n 0. At large times, where ( ) = 0P t

t

d

d
n , these equations can be easily solved, producing

the exponentially decaying profile,
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P
Qx

k k uk

2

4
11n

s
n

2

with

( ) ( ) ( )= + - +x u k k uk u2 4 2 . 122

In the continuum limit, u k , equation (11) reduces, as expected, to expression (4). The
characteristic length of the concentration decay is given by

( )l = -
x

1

ln
. 13

In the case of fast diffusion rates, u k , this length is equal to l u k which is a well-
known result for the continuum SDD model [34]. In another limit of fast degradation rates,
k u, this length is very small

( )
l

k u

1

ln
because the morphogen molecules cannot move

large distances from the source due to fast degradations [57].
Calculating LAT for the discrete-state version of the SDD model, the linear scaling was

found again [57],
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Figure 3. Ratio of LAT and MFPT for the one-dimensional discrete-state stochastic
SDD model as a function of the distance from the source for different diffusion and
degradation rates. Reprinted with permission from [57]. Copyright 2011 American
Chemical Society.

Figure 4. Stationary-state density profiles for the formation of morphogen gradients
with different production regions and for variable diffusion and degradation rates. The
red curves describe the single-site localized source, the green curves describe the
uniform production over the finite interval, and the blue curves describe the exponential
production over the semi-infinite interval. Adapted with permission from [75],
copyright 2015 IOP Publishing.
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In the limit of fast diffusion rates, which describes the continuum regime, this expression
reduces to equation (8), while at another limit of fast degradation rates, it produces

( ) +t n k1n . But for all regimes, a linear scaling as a function of the cell position n is
again observed, implying a faster than expected formation of the morphogen gradient.

To explain such fast relaxation to the stationary-state profiles, the following arguments
were presented [57]. Initially, at t=0, the morphogen molecules start at the origin (n = 0),
and there is nothing at the site >n 0. Then the relaxation time to reach the stationary-state at
site n should consist of two contributions. The first one comes from the fact that the signaling
molecules first have to reach site n, and it can be associated with a mean first-passage time
(MFPT) to arrive here. It is expected that MFPT should strongly depend on n. The second
contribution is due to local fluctuations at the given site until the stationary-state conditions
are reached. It was argued that this term, labeled as a local rearrangement time, is weakly
dependent on the position along the lattice. Thus, at large distances from the origin ( n 1)
the local relaxation time can be well approximated by the MFPT, which can be calculated
exactly using the backward-master equations [57, 81, 82]. These arguments are illustrated in
figure 3 where the ratios of LAT to MFPT are plotted as a function of the distance from the
source. In all cases, both time scales approach each other at large n. Later, these theoretical
predictions were explicitly proven by Berezhkovskii and Shvartsman [35], who also showed
that the local rearrangement time can be viewed as the LAT if the source is localized at the
observation point.

But the fact that the LAT can be well approximated by the first arrival time is not enough
to explain the fast relaxation to the stationary-state profiles. It was argued that the critical part
of the process is the particle removal from the medium [57]. Morphogen molecules have a
nonzero probability of being removed from the system at each site due to degradation. To
survive on the lattice, the morphogen molecules must move faster or they will be removed.
This corresponds to an effective speeding-up of the surviving signaling molecules. It can be
also viewed as a fact that the degradation creates an effective potential Ueff(n) that drives the
morphogens along the lattice away from the source. This potential can be estimated from the
stationary-state profile [57],

( )( )U k T Pln . 15n
s

eff B

For the discrete-state SDD model, this leads to the strongly decreasing linear potential,
 l= -U n x nlneff , which implies that there is a constant effective force,

( ) ( )
l

= -
¶

¶
=F

U n

n

1
, 16eff

eff

which drives the morphogens away from the origin. However, the most important conclusion
from these arguments is that the motion of the signaling molecules in such a potential is a
driven process. It is not the unbiased diffusion as was earlier assumed. This should naturally
lead to the linear scaling in time [57]. It is important to note that each molecule has no bias in
its motion, but because the concentration due to the degradation decreases for larger n the
overall flux in the system will flow in the direction of larger n. This is similar to the effect of
the constant force acting in the positive direction. These theoretical arguments provide a
microscopic explanation for the fast formation of morphogen gradients, and they also
emphasize the critical role of the degradation processes [57].
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2.3. The effect of source delocalization

Although the simplest SDD model was able to explain some aspects of the development of
morphogen gradients, it was pointed out that many realistic features of the process that might
strongly influence the dynamics are not taken into account [30, 31, 34–37, 57, 75]. Experi-
ments show that in many biological systems, the production region of the signaling molecules
is not strongly localized as assumed in the simplest SDD model [7–10, 12, 30]. Morphogens
are protein molecules that must be first synthesized from the corresponding RNA molecules,
but the distributions of RNA species in various embryos are more diffuse [42]. For example,
for the Bcd system, it is known that the maternal RNA molecules can be found in the region
of size 30–50 μm, which should be compared with the total length of the embryo of 400
μm [7].

To understand the role of the spatial delocalization of the production region, several
theoretical investigations have been performed [31, 37, 75]. The formal general solution to
describe the formation of morphogen gradients from an arbitrary source (as presented in
figure 2) has been obtained using the Green’s function method in the continuum approx-
imation [31, 37]. In this case, the corresponding reaction–diffusion equation can be written as

( ) ( ) ( ) ( ) ( )¶
¶

=
¶

¶
- +

C x t

t
D

C x t

x
kC x t S x t

, ,
, , , 17

2

2

where ( )S x t, is a function that describes the maternal RNA distribution. It was shown that the
time-dependent solution of this equation is given by [31, 37],

( ) ( ) ( ) ( )ò ò= - -C x t s yG x y t s S y s, d d , , , 18

where ( )G x t, is the Green’s function for this system,

( ) ( ) ( )
p

= - -
⎛
⎝⎜

⎞
⎠⎟G x t

Dt

x

Dt
kt,

1

4
exp

4
exp . 19

2

The physical meaning of this function is the probability of finding the particle at position x at
time t if it started from the origin at t=0 [37].

Using this approach, the problems of the formation of morphogen gradients with the
source production uniformly distributed over the interval have been analyzed [31, 37]. It was
found that the stationary-state profile is flattening near the origin, in agreement with obser-
vations for Bcd signaling profiles. In addition, it was argued that the almost constant profile at
the beginning of the embryo region explains why the target genes are never expressed close to
the origin; a sharper gradient is needed in order to reliably turn off genes at the specific
locations [31, 37]. Furthermore, using this method, more complex normal distribution of
production over the whole embryo length, as well as time-dependent source productions, were
investigated. A similar analysis, which emphasized more the diffusion of RNA in the
establishment of the signaling profiles, has been done in [62]. The dynamics of the devel-
opment of morphogen gradients in the continuum approximation was evaluated using LAT
[37]. Specifically, the case of the exponentially distributed source over the semi-infinite
interval, i.e. for  ¥L in figure 2, with the productions rates

( ) ( )
l l

= -
⎛
⎝⎜

⎞
⎠⎟S x

Q x
exp 20

s s

was studied. Here, ls is the average decay length for the exponential distribution. It was
shown that for this system LAT is equal to [37]
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For the case of l l=s this equation simplifies into
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⎤
⎦⎥x

k

x

x
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1

4
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2

This expression can be used to estimate the times to create Bcd morphogen gradients. Using
l 60 μm,  lx 6 , and D 1 μm2 s−1, one can obtain that t 120 min, which is very

close to the experimentally observed 90 min [16]. These calculations suggest that the
extended source accelerates the dynamics of the development of signaling profiles.

A more general theoretical method to evaluate the role of the source delocalization was
introduced later [75]. A discrete-state stochastic SDD model in one dimension with the
extended source range, as illustrated in figure 2, was considered. It was assumed that the
signaling molecules are produced over the interval of length L with rates Qm for  m L0 :
see figure 2. The total production rates is equal to = å =Q Qm

L
m0 . Because the production of

morphogens at different sites is independent from each other, it was suggested that the general
solution for the probability of finding a signaling molecule at site n at time t with a delo-
calized production region as specified in figure 2, ( )P n t, , can be written as a sum of the
probabilities ( )P n t m, ; for the single localized sources at sites m [75]. More specifically, the
probability function ( )P n t m, ; is governed by the following master equations,
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for n=0. In the steady-state limit,  ¥t , these equations can be solved explicitly, yielding
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for m n. The parameter x is given in equation (12). Then using the superposition
arguments, it can be shown that
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This method allowed us to analyze the formation of morphogen gradients for an arbitrary
length of the production region and for arbitrary production rates [75]. In addition, it also
leads to the computation of the dynamic properties for the development of the signaling
profiles by evaluating the relaxation to the stationary-state profiles [75]. To clarify the role of
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the source delocalization, the development of the morphogen gradients with uniform dis-
tributed production over the finite interval, and with the exponentially distributed production
along the semi-infinite interval, were compared with the formation of the signaling profile in

Figure 5. Local accumulation times for the formation of morphogen gradients with
different production regions and for variable diffusion and degradation rates. The red
curves describe the single-site localized source, the green curves describe the uniform
production over the finite interval, and the blue curves describe the exponential
production over the semi-infinite interval. Adapted with permission from [75],
copyright 2015 IOP Publishing.

Figure 6. A schematic view of the multi-dimensional system with the formation of
morphogen gradients for d=2. The signaling molecules are created at the origin with
rate Q. They diffuse with rate u in all directions without a bias. At each cell,
morphogens can be degraded with rate k. Adapted with permission from [60], copyright
2014 AIP Publishing LLC.
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the case of the sharply localized source at the origin [75]. The corresponding density profiles
are presented in figure 4, while the estimated LAT are given in figure 5. It was concluded that
the extended sources delivered the signaling molecules much further in comparison with the
single localized source. In addition, the delocalized sources were able to create sharp
boundaries which are needed to controllably turn genes on. They were also generally faster in
reaching the stationary states.

2.4. The formation of morphogen gradients in two and three dimensions

Most of the theoretical models applied to describe the establishment of the biological sig-
naling profiles are essentially one-dimensional [34–37, 57, 75]. However, a more realistic
description of these processes should take into account a complex structure of the embryos
[22, 52]. This has led to multi-dimensional generalizations of the original SDD models
[43, 44, 60].

First, continuum radially symmetric models were considered [43]. It was assumed that
the source region is a sphere of radius R around the origin, and that there are no morphogens
in the system at t=0. In this case, the concentration profiles are described by [43, 44]
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for a d-dimensional system. Here D is the diffusion constant, Q is the production rate at the
boundary of the source region, k is the linear degradation rate and r R. The boundary
conditions can be written as [43, 44]
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It was also assumed that, far away from the production region, the concentration of the
signaling molecules disappears, ( ) ¥ =C r t, 0. At large times, the concentration profiles
approach the stationary state, which is given by [44]
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where Km(y) is the mth order modified Bessel function of the second kind and l = dD k is
the characteristic decay length of the concentration profile in d dimensions. The application of
the local relaxation functions provided the explicit expression for the times to reach the
stationary state [43, 44],
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For two-dimensional systems (d = 2), from equations (30) and (31) one could derive the
concentration profile [44],
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and the LAT,
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In the case of d=3, it was shown that [43]
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The analysis of the dynamics of the formation of morphogen gradients in two and three
dimensions led to some unexpected results [43]. It was found that, in contrast to one-
dimensional systems, there are multiple time scales for approaching the stationary con-
centration profiles near the production region ( r R). It was suggested then that the
dimensionality is an important factor in the morphogen gradients’ development in multi-
dimensional systems, although the mechanisms of this phenomenon were not clarified [43].

These surprising observations were fully explained only when more general multi-
dimensional discrete-state stochastic models were introduced [60]. The d-dimensional system
with the production at the origin, as shown in figure 6, was investigated. In this system, each
lattice site is characterized by d coordinates, ( )

= ¼n n nn , , , d1 2 . The source of the signaling
molecules is at the origin, ( )

= ¼n 0, 0, ,00 , with the production rate Q (see figure 6).
Morphogens can diffuse to the nearest neighboring sites with rate u, and the degradation rates
at each site are equal to k (figure 6). To solve the problem, a function ( )¼P n n n t, , , ;d1 2 ,
defined as the probability density at the cell ( )

= ¼n n nn , , , d1 2 at time t, was analyzed at all
times using the following master equations [60],
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where ånn corresponds to the summing over all nearest neighbors,
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At the origin, the dynamics are slightly different,
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At large times, the system achieves a stationary state with an exponentially decaying
signaling concentration profile,
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( ) ( ) ( )l= + - + = -x du k k duk du x2 4 2 , 1 ln . 402

It was shown also that the dynamics of approaching the stationary state are specified by the
LAT [60]
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The equivalent expression for the LAT at the distance r from the origin produces [60],
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In the fast degradation limit, k u, this equation gives

( ) ( )t +r
k

r d

k

1
. 43

In the continuum limit, u k , it was found that there is no dependence on the dimensionality
[60],
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This contrasts with the predictions of the radially-symmetric continuum models [43, 44].
From equation (31) one could obtain for the localized source R=0,

Figure 7. Comparison of the LAT for discrete-state stochastic models and for radially-
symmetric continuum models as a function of the distance from the source r in two
dimensions. (a) Fast degradation limit, k=1, =u 0.01; (b) comparable diffusion and
degradation rates, = =k u 1; and (c) fast diffusion limit, k=1, u=100. Insets show
the same plots for larger length scales. Adapted with permission from [60], copyright
2014 AIP Publishing LLC.
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Figure 8. Comparison of the LAT for discrete-state stochastic models and for radially-
symmetric continuum models as a function of the distance from the source r in three
dimensions. (a) Fast degradation limit, k=1, =u 0.01; (b) comparable diffusion and
degradation rates, = =k u 1; and (c) fast diffusion limit, k=1, u=100. Insets show
the same plots for larger length scales. Adapted with permission from [60], copyright
2014 AIP Publishing LLC.

Figure 9. Local accumulation times at r=10 as a function of the spatial dimension.
The blue curve corresponds to the fast degradation rates, k=1, u = 0.01. The red
curve is for the comparable degradation and diffusion rates, = =k u 1. The green
curve describes the fast diffusion limit, k=1, u=100. Adapted with permission from
[60], copyright 2014 AIP Publishing LLC.
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To rationalize these deviations between the theoretical predictions, the LAT in two and
three dimensions for both approaches have been compared. The results are presented in
figures 7 and 8. One can see that the continuum limit of the discrete-state models and radially-
symmetric continuum models do not agree with each other, although for large distances
( r 1) the differences get smaller [60]. It was also noticed that the radially-symmetric
models predict that ( )t = =r 0 0, while for the discrete-state case ( )t = = ¹r k0 1 2 0.
But the relaxation times to the stationary profiles can never be zero because originally in the
system there are no morphogens. Thus, the radially-symmetric continuum models cannot
properly describe the dynamics of the formation of morphogen gradients for >d 1 near the
production region. The main reason for this is the assumption of the spherically symmetric
solutions of the corresponding reaction–diffusion equations at all length scales. The theor-
etical approach based on the discrete-state stochastic framework does not assume the sphe-
rical symmetry and this allows us to correctly describe the dynamics at all scales and in all
dimensions [60].

The effect of dimensionality on the dynamics of the formation of morphogen gradients
have also been investigated using the discrete-state stochastic models [60]. The results are
presented in figures 9 and 10. It was found that the dynamics are determined by the distance
from the source and by the relative values of the degradation and diffusion rates. LAT
depends on d for fast degradation rates ( k u), while there is no dependence in the con-
tinuum limit ( u k). The last observation can be simply explained by noting that in the
continuum case, the diffusion rate is very fast and the rate-limiting step is the production of
morphogens, which is clearly independent of the dimension. Theoretical calculations also
show that the LAT for the sites far away from the source ( r 1) increase with d, while for
the sites near the production area ( r 0) the trend is reversed: see figures 9 and 10. The
following arguments were presented to explain these results [60]. There are two effects by

Figure 10. Local accumulation times at r=0 as a function of the spatial dimension.
The blue curve corresponds to the fast degradation rates, k=1, u = 0.01. The red
curve is for the comparable degradation and diffusion rates, = =k u 1. The green
curve describes the fast diffusion limit, k=1, u=100. Adapted with permission from
[60], copyright 2014 AIP Publishing LLC.
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which the dimension affects the dynamics of the morphogen molecules. Increasing d effec-
tively increases the mobility of the signaling molecules because there are more channels to
escape from the given site. At the same time, there are more pathways that connect the source
region and any other site on the lattice, and this should increase the relaxation times because
there are more long slow trajectories connecting the source and the target cell. The first effect
dominates at small distances near the source because there are less pathways to reach the
given cell. At the same time, the second effect is more important for large distances.

To investigate in more detail the dynamics of the formation of the signaling profiles, higher
moments of the relaxation to the stationary states have been calculated [44, 60]. From this point
of view, the LAT is the first moment, ⟨ ⟩t º t . Using the discrete-state stochastic method, the
variance in the local accumulation times, ⟨ ⟩ ⟨ ⟩s º -t t2 2 , was estimated as [60]
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In the limit of fast degradation rates, k u, this expression simplifies into
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Figure 11. Normalized variance as a function of distance from the source for different
dimensions in the discrete-state stochastic models. (a) Fast degradation rates, k=1,
=u 0.01; (b) comparable degradation and diffusion rates, = =k u 1; and (c) fast

diffusion rates, k=1, u=100. Adapted with permission from [60], copyright 2014
AIP Publishing LLC.
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while in the limit of fast diffusion rates (continuum limit) the variance is
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2 2 5
. 48

These results suggest that, similar to the LAT, the dependence of the variance of the
relaxation times to the stationary profile on the dimension disappears in the continuum
limit [60].

The first and second moments of the relaxation times have been further employed in
analyzing an important question on how biological systems might control the stochastic noise
during the processes of the formation of morphogen gradients [60]. It was argued that the
variance normalized by the LAT is a convenient measure of noise, and it is presented in
figure 11. Theoretical calculations show that the noise can be reduced by increasing the
degradation rate and the dimensionality of the system.

2.5. Nonlinear degradation mechanisms

Several experimental studies suggested that in some systems, the development of the sig-
naling profiles might be associated with more complex nonlinear degradation processes
[51, 54–56]. In these situations, the presence of other morphogens can catalyze or inhibit the
process of the removal from the medium, and this should affect the dynamics of the formation
of morphogen gradients. In this case, the temporal evolution of the concentration profile can
be written as [51]
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with ¹m 1. Using numerical solutions and mathematical bounds, initial studies have shown
that the dynamics of approaching the stationary state differ significantly depending on the
parameter m [51]. For m=0 and m=1 (linear degradation) LAT are linear functions of the
distance from the source, but for m=2, 3 and 4, the scaling changes from linear to quadratic.

The explanations for these surprising observations were presented in the theoretical
analysis that proposed viewing the degradation process as an effective driving potential [76].
The degradation creates a gradient by removing molecules from the system, and this is
equivalent to the action of the potential given in equation (15) that drives molecules away

Figure 12. Schematic view of equivalent models for the formation of morphogen
gradients. (a) Synthesis-diffusion-degradation model; (b) biased-diffusion model.
Adapted with permission from [76], copyright 2015 AIP Publishing LLC.
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from the production region. Then the original reaction–diffusion model with the degradation
can be approximated as a biased-diffusion model without degradation [76]. This is illustrated
in figure 12.

It was assumed that the equivalent biased-diffusion model has L (  ¥L ) sites [76]. The
morphogens start the motion at t=0 at the origin. The particles can move to the right (left)
from site n with the rate gn(rn): see figure 12. When the particle reaches site L it is instan-
taneously moved back to the origin n=0. The model is non-equilibrium, so that there is
always a flux in the system in the direction away from the source. In the biased-diffusion
model, the probability of finding the molecule at site n at time t is given by a function ( )P tn

[76]. The temporal evolution of these probabilities is described by the following master
equations [76],

Figure 13. Ratio of calculated mean first passage times for the SDD model and for the
equivalent biased-diffusion model. (a) The dependence on the distance from the source;
(b) the dependence on the ratio of the degradation rate over the diffusion rate. The
distance from the source is set to =n 104. Adapted with permission from [76],
copyright 2015 AIP Publishing LLC.
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where J is the flux from the site L back to the origin n=0. When the system achieves the
stationary-state behavior, the flux through every site is equal to J.

Comparing the SDD model and the equivalent biased-diffusion model, it should be clear
that the mapping between them is not exact [76]. It can be seen by noting that in the biased-
diffusion model there is always a conservation of the probability, while in the SDD model the
conservation is only achieved at the stationary-state limit. The relations between the para-
meters of both models can be made quantitative by using the following arguments. The
diffusion rates gn and rn are related to each other via the effective potential, as can be shown
using the detailed balance-like arguments [76, 82],
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The physical meaning of this expression is that the stronger the potential, the faster the motion
in the positive direction, > +g rn n 1. But to obtain the explicit formulas for the transition rates,
a second condition is needed [76],

( )+ = + -g r D kC2 . 54n n
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This implies that the residence of each molecule at site n is identical in both models. Together,
equations (53) and (54) uniquely define the transition rates in the biased diffusion model via
parameters of the SDD model [76].

For linear degradation (m = 1) this approach leads to the following transition rates in the
equivalent biased-diffusion model [76],

( )= =
+
+

= =
+
+

g g
D k

x
r r x

D k

x

2

1
,

2

1
, 55n n

with ( )= + - +x D k k kD D2 4 22 . The results for the mean first-passage times from
both models are given in figure 13. We conclude that the approximate mapping works quite
well everywhere, but especially for large degradation rates.

Extending this method to nonlinear degradation processes indicates that for m 2 the
steady-state profile is given by [76],
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This concentration profile corresponds to the logarithmic potential,
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It can be shown that the mean first-passage times for the equivalent biased-diffusion model at
large distances from the source are equal to [76]
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This is an important result since it predicts a quadratic scaling for the relaxation times with the
nonlinear degradation, as illustrated also in figure 14.

It is also interesting to note that the approach to the stationary state in nonlinear
degradation systems takes place in a self-similar manner for >m 1 in one and two dimen-
sions, and for < <m1 3 in three dimensions [84–86]. These results have been obtained
using the continuum analysis of the initial boundary value problem. It provided additional

Figure 14. Theoretically calculated mean first-passage times as a function of the
distance from the source for different degrees of nonlinearity for the biased-diffusion
model. (a) m=2; (b) m=10. Adapted with permission from [76], Copyright 2014
AIP Publishing LLC.
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arguments to explain the quadratic scaling behavior in the local accumulation times for all
non-linear degradation models.

Theoretical calculations using the mapping of the SDD model to the equivalent biased-
diffusion model clearly show different scaling behaviors depending on the mechanisms of
degradation. Linear scaling is observed for m=0 or 1, while quadratic scaling is found for
nonlinear degradations with m 2 [51, 76]. The different dynamic behavior was explained
using the concept of the effective potentials due to degradation [57]. Linear degradation
corresponds to a strong driving potential, as shown in figure 15. In this case, there is a unique
length scale λ across the whole system. This leads to effectively driven diffusion which has
the expected linear scaling. The situation is different for the nonlinear degradation processes.
The stationary state in this case can be described by power-law concentration profiles, which
do not possess unique length scales. As a result, the effective potential (logarithmic) is weak
enough so that it cannot destroy the quadratic scaling of the unbiased diffusion. It might only
affect the amplitude of the random-walk fluctuations for each signaling molecule.

Figure 15. Effective potentials due to degradation. Linear degradation corresponds to
m=1, while m=3 and m=10 describe non-linear degradation processes. Adapted
with permission from [76], copyright 2015 AIP Publishing LLC.

Figure 16. A simplified view of the direct-delivery mechanism of the signaling
molecules via the utilization of cytonemes. The red cell is the source. The green cells
labeled as = ¼n N1, , are the target cells. Cytonemes are shown as tubular extensions
from the source cell to the target cells. Morphogens are the small red circles inside the
cytonemes. Adapted with permission from [77]. Copyright 2016 American Chemical
Society.
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2.6. Alternative mechanisms: direct delivery of morphogens

Recent experimental advances in studying the development processes in various systems
revealed that there is a significant number of experimental observations that cannot be
explained by reaction–diffusion mechanisms [11, 47, 64, 65, 69]. In embryo systems with
complex internal structures, simple free diffusion might not always be very efficient in
establishing the morphogen gradient [11, 64]. These observations stimulated new ideas on
how the genetic information can be transferred in such systems. An alternative direct-delivery
mechanism has been proposed [11, 41, 63, 66]. It was suggested that the signaling molecules
can be transported to target cells utilizing cellular tubes, which are called cytonemes
[11, 41, 63, 66, 69]. Cytonemes are dynamic cellular extensions where cells can extend and
retract very quickly with the help of actin filaments. Their length varies from 1–100 μm with
a diameter of less than 100 nm. Cytonemes have been recently observed in several biological
systems, but their cellular functions were unclear [63–65, 68–71, 74]. It was proposed that
morphogens can be transported by myosin motor proteins along the actin filaments inside the
cytonemes directly from the source cells to the target cells, as shown schematically in
figure 16 [11, 68, 69]. The direct-delivery mechanism thus avoids the problems where a
geometrically complex environment prevents the free diffusion forming the signaling profiles.

2.7. Transport through cytonemes

Recently, a first quantitative physical–chemical method to describe the direct delivery via
cytonemes has been introduced [77]. It is based on a discrete-state stochastic analysis of the
model presented in figure 16. The model assumes that there are +N 1 embryo cells in the
system (shown as squares in figure 16). One of them (red square, n = 0) is a special source
cell where the signaling molecules are produced with a rate Q. The source cell also generates
N cytonemes that extend and attach to each of the target cells (green squares in figure 16). It is
assumed that the cytonemes are already established at the beginning of the process and they
are stable until the morphogen gradient is fully established. Signaling molecules (shown as
small red circles in figure 16) are transported to the nth target cell from the source cell with a
rate wn ( = ¼n N1, 2, , ). When they reach their target cells, morphogens can be degraded
with a rate k. This is the minimal model that takes into account the most relevant processes,
such as the direct delivery via cytonemes and the degradation of morphogens.

This model can be solved by analyzing the single-molecule probability density function
Pn(t) of finding the morphogen at site n at time t. The temporal evolution of this probability
function follows the set of master equations [77]

( ) ( ) ( )å= -
=

P t

t
Q w P t

d

d
, 60
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n
0

1
0

for n=0, and

( ) ( ) ( ) ( )= -
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t
w P t kP t

d

d
61n

n n0

for >n 0. Assuming that initially there were no morphogens in the system, ( )= =P t 0 0n for
all n, these master equations can be solved exactly at all times, which leads to
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n1 is defined as a total production rate from the source cell to all target cells.
These results imply that the concentration of signaling molecules at each cell is an
exponentially decaying function of the time. It can be viewed as a result of balancing between
two opposing processes: the direct delivery with rate η and the removal with rate k. In the
stationary-state limit, ( ) ¥t , the density profiles reduce to,
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h h
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The dynamics of approaching the stationary state can be understood from analyzing a

local relaxation function, defined as ( ) ( )
( )

( )

( )º -
-
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P t P

P P0
n n

s

n n
s [34]. Simple calculations yield the

following expressions for the local accumulation times [77],
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,
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. 65n 0

The model predicts that there is no dependence on the target cell position, n, in contrast to
reaction–diffusion mechanisms of the formation of morphogen gradients. The relaxation

Figure 17. Comparison of normalized variances as a function of the distance from the
source for reaction–diffusion and direct-delivery mechanisms. The red lines correspond
to the SDD model with a diffusion rate u. The blue lines describe the direct delivery via
cytonemes with the total transportation rate η. Adapted with permission from [77].
Copyright 2016 American Chemical Society.
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dynamics to the stationary concentration profiles are identical for all target cells. The main
reason for this is that the processes at all target cells are independent from each other, and the
stationary state at each of them cannot be established until the steady-state behavior is
observed in the source cell [77]. This can only happen simultaneously in all cells in the
system (see figure 16).

Local relaxation functions have also been applied to obtain the second moment of LAT,
which allowed us to evaluate the robustness of the direct-delivery mechanism [77]. It was
shown that

⟨ ⟩ ( ) ⟨ ⟩ ( )t
h h

h
t

h
=

+ +
=

k k

k

2
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2
, 66n

2
2 2

2 2 0
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2

which are again independent of the position of the target cell, n. The normalized variance was
then computed to be [77],
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The normalized variances for the direct-delivery mechanisms are compared with the
corresponding predictions from the reaction–diffusion processes in figure 17. One can see that
sn is always less for the direct-delivery transport. This means that moving the signaling
molecules through the cytonemes is a more robust mechanism of the formation of morphogen
gradients because it is affected less by the stochastic noise [77]. In the reaction–diffusion
mechanism, the signaling molecules can fluctuate spatially between different cells due to
diffusion, but this option is not available for the direct-delivery mechanism. So the advantage
of using the transport via cytonemes in creating signaling profiles is not only in overcoming
the geometric constraints but also in reducing the influence of the stochastic noise [77].

To better understand how the direct-delivery process works, a more microscopic
description of the transportation rates wn was utilized for calculating the dynamic properties
of the system [77]. In the first approach, it was suggested to use the fact that motor proteins
drive the morphogens along the cytonemes. It was assumed that the rates are related to the
free energy difference of moving the signaling molecule from the source cell to the target cell
[77],

( ) ( )= -
D⎡

⎣⎢
⎤
⎦⎥w

G n

k T
exp , 68n

B

where ( )DG n is the energy required to displace the morphogen to the target cell n. One can
assume that the length of the cytoneme to the target cell n, Ln is proportional to n, i.e.

=L Ann , and the motor proteins spend energy ε (in units of k TB ) by moving every signaling
molecule a distance l. Then the free energy difference can be written as
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where e=a l A . The explicit expression for the transportation rate is given by
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a
. This finally leads to the following expression for the stationary concentration

profile [77],
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where the total transportation rate η is equal to

( )
( )

åh = - =
- - -

- -=

+⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

n

a
exp

exp exp

1 exp
. 71

n

N
a

N

a

a
1

1 1

1

This model predicts the exponential decaying morphogen gradient (see equation (70)), which
is similar to the predictions from the reaction–diffusion models [7–10]. However, the
difference is that the decay length in the direct-delivery mechanism, specified by parameter a,
is larger for more efficient motor proteins that spend less energy in driving the morphogens
along the cytonemes. In the reaction–diffusion mechanism, the decay length is controlled by
the ratio of diffusion and degradation rates [34, 57]. Thus the energy dissipation in the
transportation of the signaling molecules through the cytonemes is important for the direct-
delivery mechanism [77].

Because cytonemes are narrow cylindrical tubes, the transport of the signaling molecules
can be viewed as effectively one-dimensional, and this suggests that intermolecular interac-
tions, e.g. due to exclusion, might affect the dynamics [77]. This possibility was investigated
using the concept of totally asymmetric exclusion processes (TASEP) [77]. TASEPs are
nonequilibrium multi-particle models that were successfully utilized for uncovering the
mechanisms of many complex biological processes [73]. It was proposed that each cytoneme
can be viewed as a one-dimensional lattice on which morphogens move in the direction of the
target cell. The problem of describing the dynamics of the formation of morphogen gradients
in such a system is identical to a set of open-boundary TASEP segments coupled at the source
cell. Stationary-state fluxes for TASEP on finite lattice segments with an entrance rate α and
an exit rate β are well known [72],
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Figure 18. Stationary-state concentration profiles for interacting and non-interacting
signaling molecules during the transportation along the cytonemes. Adapted with
permission from [77]. Copyright 2016 American Chemical Society.
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For the model presented in figure 16, the entrance and exit rates on each cytoneme are given
by [77],

( )a b= =Q N k, . 74

The transition rate from the source cell to the target cell n can be written as

( ) ( )=w J Q N k n, ; . 75n

The stationary-state profile in this system of interacting morphogens is equal to
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Figure 18 illustrates the morphogen gradients for this system of interacting signaling
molecules. The possibility of interactions between the morphogen molecules has a dramatic
effect on the stationary profiles. While at distances not far away from the source the effect is
minimal, for larger distances the density profile saturates. But this leveling is not useful for
the morphogen gradients because the information can be transferred efficiently only from
strongly decaying profiles. It was suggested that these intermolecular interactions might
present a problem for the direct-delivery mechanism for very large distances, but
experimental tests of these predictions are needed because many other factors might change
the outcome [77].

It is also important to note that the transport of morphogen molecules along the cyto-
nemes could be more complex due to the possibility of various super-diffusive or sub-
diffusive processes [87–89]. These processes might arise because of dense crowding and a
viscoelastic environment of the living cells, and because of the complex intermolecular
interactions. All these factors can significantly modify the dynamics of the formation of
morphogen gradients under direct-delivery conditions.

3. Concluding remarks and future directions

To conclude, we presented a review of the recent developments in the theoretical under-
standing of the mechanisms that lead to the formation of biological signaling profiles. The
dynamics of the formation of morphogen gradients was analyzed first using the reaction–
diffusion framework. This is assumed to be the main mechanism for creating the con-
centration profiles of signaling molecules that can efficiently transfer the information in
embryo systems. We discussed the critical role of the degradation processes, and it was
argued that its action is similar to the driving potential that accelerates the dynamics of the
formation of morphogen gradients. Several other important aspects of the development of
signaling profiles, including the effect of the size of the production region, dimensionality,
nonlinearity in the degradation and discreteness of these processes, have been thoroughly
analyzed. We also discussed the alternative direct-delivery mechanisms in the establishment
of morphogen gradients. The presented theoretical methods are applicable to a broad range of
biological development phenomena, as well as for cell signaling and tissue and organ for-
mation processes.

Although many features of the development of signaling profiles are now better
understood, there are many puzzling questions and observations in the field. Let us briefly
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mention several of them. The production of the morphogens is a time-dependent process with
variable rates. But existing theoretical methods mostly assume that these rates are constant. It
is not clear how to take into account the temporal effect in the source and what effect it might
have on dynamics. Another challenging problem is whether the morphogen gradient needs to
reach the stationary state or not in order to properly transfer the information. There are
controversial views about the possibility of the pre-steady state decoding as the more efficient
mechanism of information transfer [23, 58]. It is important to understand this because it might
affect the dynamics and the robustness of the system. Another critical question is related to
the fact that embryo cells during the formation of morphogen gradients are not frozen as
implicitly assumed in current theoretical models. They are dynamic systems that can grow,
shrink, divide and change shape. New theoretical ideas are needed in order to couple the
chemical and biophysical processes of the formation of morphogen gradients with mechanical
stability and transformations in embryo cells. Finally, it is still unclear how exactly the
embryo cells read the information from the signaling profiles. Several ideas were expressed
but none of them are fully supported by existing experimental data [47]. It is critically
important to combine multiple theoretical, computational and experimental methods to
advance our knowledge on the mechanisms of these fundamental biological processes.
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