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Thermodynamics and phase transitions of electrolytes on
lattices with different discretization parameters
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Lattice models are crucial for studying thermodynamic properties in many physical, biological
and chemical systems. We investigate the lattice restricted primitive model (LRPM) of
electrolytes with different discretization parameters in order to understand thermodynamics
and the nature of phase transitions in systems with charged particles. A discretization
parameter is defined as a number of lattice sites that can be occupied by each particle, and
it allows one to study the transition from the discrete picture to the continuum-
space description. Explicit analytic and numerical calculations are performed using the
lattice Debye–Hückel approach, which takes into account the formation of dipoles, the
dipole–ion interactions and correct lattice Coulomb potentials. The gas–liquid phase
separation is found at low densities of charged particles for different types of lattices.
The increase in the discretization parameter lowers the critical temperature and the critical
density, in agreement with Monte Carlo computer simulation results. In the limit of infinitely
large discretization our results approach the predictions from the continuum model of
electrolytes. However, for the very fine discretization, where each particle can only occupy one
lattice site, the gas–liquid phase transitions are suppressed by order–disorder phase
transformations.

1. Introduction

Electrostatic interactions are important in various
physical, chemical and biological processes [1].
However, a full thermodynamic description of
systems with charged particles is still far from complete.
In the last decade, this subject has attracted a lot of
attention due to controversial theoretical and experi-
mental issues on the nature of phase transitions in ionic
fluids [2–4].
Lattice models have been used extensively for

investigations of different phenomena in chemistry,
physics and biology. For example, the Ising model,
which is a lattice gas model, is fundamental for
understanding critical phenomena in non-charged
systems. This observation has strongly stimulated
many studies of ionic fluids utilizing the discretized
lattice models [5–18]. There are several advantages in
using the lattice approach for systems with the particles
interacting via long-ranged Coulomb potentials.
The production of ion pairs and dipole–ion interactions
can be described better than in continuum-space models

[10, 13]. Lattice models are also computationally much
more efficient with respect to the time and length scales
[6, 7, 14, 15]. Monte Carlo computer simulations
of charged systems on discretized lattices are faster by
a factor of 5–100 than the corresponding continuum
models [6, 7, 15].

If we define a diameter of a charged particle as � and
the lattice cell size as a, then a discretization parameter
� ¼ �=a specifies how close the lattice system approaches
the continuum behaviour. The case of �¼ 1 corresponds
to the standard lattice model of electrolytes where each
particle occupies no more than one lattice site. When the
discretization parameter becomes very large the system
of charged particles does not feel the underlying lattice
anymore and its thermodynamic properties become
indistinguishable from the properties of continuum
electrolytes.

Theoretical investigations of thermodynamics and
phase behaviour of lattice models of electrolytes have
followed several different approaches [8–13, 16, 17].
The hierarchical reference theory [9] utilized the
renormalization group methods to calculate thermo-
dynamic properties of ionic fluids on lattices.
Ciach and co-worker [12, 16, 17] used the field-
theoretical methods to analyse different properties of*Corresponding author. Email: tolya@nice.edu
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lattice electrolytes. Other field-theory approaches for
lattice and off-lattice electrolytes use the Hubbard–
Stratonovich transformation [19] or method of collective
variables [20, 21]. However these methods are mathe-
matically very complicated and the predictions for
lattice systems, as compared with Monte Carlo simula-
tions [6, 22], are mostly of qualitative nature. A different
theoretical method [10, 11, 13, 22] is based on the
physically more transparent Debye–Hückel (DH)
approach. In this method the free energies of lattice
electrolytes are obtained by solving the lattice versions
of the usual Debye–Hückel equations for general
dimensions. This method can provide a reasonable
thermodynamic description of different lattice models
of charged particles, such as charge-asymmetric [13]
and anisotropic lattices [11, 22], as compared with
computer simulations and other theoretical approaches
[16, 17].
A full thermodynamic investigation of the con-

tinuum (� ¼ 1) restricted primitive model (RPM),
which is a system of equal-size hard-sphere ions carrying
positive and negative charges, using the Debye–Hückel
approach has shown that in the system there are
gas–liquid phase transitions driven by electrostatic
interactions [23]. However, a systematic study of the
lattice version of the RPM [10] (with �¼ 1) indicates that
these phase transitions are suppressed on simple-cubic
(sc) and body-centred cubic (bcc) lattices because of
thermodynamically more favourable charge-ordering
phase transformations. These theoretical observa-
tions are in agreement with the predictions from
Monte Carlo computer simulations [6, 22]. The different
thermodynamic properties of lattice and continuum
models of electrolytes raised the question of crossover
phase behaviour of ionic systems with intermediate
lattice discretization. Ciach and co-worker [12, 16, 17],
using mean-field arguments and renormalization
group methods, discussed some features of phase transi-
tions for these lattice models. However, full thermo-
dynamic and phase properties of these systems are
not investigated yet. The goal of this article is to fill
this gap.
In this paper we study the lattice models of charged

particles with different discretization parameters by
applying the Debye–Hückel approach. In addition,
we modify the original lattice model of electrolytes [10]
(�¼ 1) that utilized a mean-field assumption about
electrostatic potentials and led to several unphysi-
cal features at high densities of ions. The paper is
organized in the following way. In section 2 we provide
a general description of lattice models of electrolytes
using the Debye–Hückel method. Specific calcula-
tions and discussions of thermodynamic properties of
charged systems for lattices with different discretization

parameters are given in section 3. Our results and
conclusions are summarized in section 4.

2. General lattice DH theory

Consider the lattice restricted primitive model (LRPM)
of electrolytes in three dimensions. Note that our
method can be easily generalized in d dimensions [10],
however, for clarity we prefer to explain the details
using three-dimensional lattices. The model consists of
an equal number of oppositely charged particles, with
charges q0 or �q0, correspondingly. Due to the overall
neutrality, the densities of positive and negative
ions are equal to each other, �þ ¼ �� ¼ ð1=2Þ�1. The
particles have a spherical shape with the charge located
in the centre of the sphere. The diameter of the particle
is given by a�, where a is a nearest neighbour lattice
distance and � is the discretization parameter: see
figure 1. Thus, in the special case �¼ 1 each ion occupies
a single site, while � ¼ 1 corresponds to a continuum
model. All particles interact only through Coulombic
potential and hard-core exclusion. Then the free
energy of the system can be written as a sum of two
terms, F ¼ F id þ F el. It allows one to calculate the

a a ζ

Figure 1. A schematic picture of the lattice model of
electrolytes with different discretizations. Large empty circles
denote the positive particles, while large grey circles corre-
spond to the negative ions. The ions are spheres with the
diameter a�, where a is the distance between the nearest lattice
sites. The position of the origin is marked by a cross. Small
filled circles indicate the position of lattice sites in the exclusion
zone of the central positive ion.
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thermodynamic properties of the system, such as
chemical potentials and the pressure, as given by [10, 23]

�ff � �
F

kBTV
,

���i �
�

kBT
¼ �

@ �ff

@�i
,

P �
P

kBT
¼ �ffþ

X
i

�i�i: ð1Þ

Since every positively charged particle has a correspond-
ing negatively charged ion, we can introduce new
hypothetical particles with chemical potential
�1 ¼ �� þ �þ. Then the two-component system is
easily mapped into the one-component system with
an overall density of hypothetical particles given by �1.
The conditions for phase transitions are specified by

�1ðT, �liqÞ ¼ �1ðT, �vapÞ, PðT, �liqÞ ¼ PðT, �vapÞ: ð2Þ

Let us take an arbitrary particle and assume that
its charge qi is in the centre of the coordinates. Then
all lattice sites in the system can be divided into three
groups with respect to the position of this fixed particle
as shown in figure 1. The first one consists of just
one lattice site, r ¼ ð0, 0, 0Þ, where the charge of the
particle is located. The second group is made of other
lattice sites in the exclusion zone where no centres
of other particles can be found. All lattice sites outside
the exclusion zone are in the third group. To determine
the average electrostatic potential at each lattice site
we can derive the linearized lattice Poisson–Boltzmann
equations following the standard Debye–Hückel
procedures [10, 24]. For the central lattice site we obtain

�’ðr ¼ ð0, 0, 0ÞÞ ¼ �
4p
Dv0

qi, ð3Þ

with v0 being a unit cell volume. In this equation �’
is the lattice Laplacian which is defined as follows [10],

�’ðrÞ ¼ �
6

c0a2

X
nn

½’ðrþ aÞ � ’ðrÞ�, ð4Þ

where a is a nearest-neighbour vector and the
summation runs over all c0 nearest neighbours.
The number of the lattice sites in the exclusion zone

(the second group) is determined by the discretization
parameter � and the type of lattice. For example, for
sc lattices with �¼ 1, 2, 3, 4 or 5 these numbers are 0, 26,
92, 250 and 484, correspondingly [6]. Since there are
no charges in the exclusion zone outside of the central

lattice site, the linearized lattice Poisson–Boltzmann
equations have a simple form [10, 24],

�’ðrexÞ ¼ 0, ð5Þ

where rex specifies the lattice sites in the exclusion zone
but not the central point.

Similarly, for the lattice sites in the third group,
i.e. outside of the exclusion zone, the linearized lattice
Poisson–Boltzmann equations are given by [10, 24]

�’ðroutÞ ¼ �
2’ðrÞ, ð6Þ

where rout describes the lattice points outside the
exclusion zone and �2 ¼ 4p��1q20=D is the inverse
squared Debye screening length with � ¼ 1=kBT.

Linearized lattice Poisson–Boltzmann equations (3),
(5) and (6) can be written in a unified way as

�’ðrÞ ¼ �2’ðrÞ � A0�ðrÞ �
X
ri, ex

Ai�ðr� ri, exÞ, ð7Þ

where the coefficients A0 and Ai are determined
explicitly from equations (3), (5) and (6), and
the summation is over all lattice sites from the
second group. Note that �ðrÞ is a lattice delta-function
defined as

�ðr� r0Þ ¼
1, r ¼ r0;

0, r 6¼ r0:

�
ð8Þ

Equation (7) can be solved via Fourier transforma-
tion and it yields the average electrostatic potential ’ðrÞ
at every point of the lattice.

Note, that in the original lattice Debye–Hückel
approach [10, 11, 13] the electrostatic potential at each
site was found by averaging over all nearest neighbours.
This mean-field assumption provided a reasonable
description of thermodynamic properties of lattice
electrolytes at low densities of charged particles,
however it led to some unphysical predictions at high
densities where correlations are important. Here we
solve exactly linearized lattice Poisson–Boltzmann
equations at all lattice sites and for all possible
discretizations. Thus our method provides a consistent
thermodynamic description of lattice electrolytes for
all ranges of parameters.

The solution of equation (7) then allows one to
calculate the average electrostatic potential at the central
site due to all ions except the one fixed at the origin,

 i ¼ ’iðr, x
2Þ � ’iðr, x

2 ¼ 0Þ, ð9Þ
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where we introduced a dimensionless parameter x ¼ �a.
It can be shown that the general expression for
 i is given by

 i ¼
4pqi
Dv0

Gðx2Þ, ð10Þ

where the specific functional form of Gðx2Þ is determined
again from equations (3), (5) and (6).
Since the ideal part of the free energy of the lattice

model for charged particles is known [10], we only
have to calculate the electrostatic contribution. It can be
done by utilizing the Debye charging procedure [10, 24],

�ff el ¼ �
1

kBTV

X
qj

Z 1

0

 jð�qÞd�,

�
1

12v0

Z x2

0

Gðx2Þ, dðx2Þ: ð11Þ

All thermodynamic properties and phase behaviour of
the system can be obtained from the free energy through
standard calculations [10, 23]. It should also be
noted that the Debye–Hückel approach is a mean-field
theory and only classical critical behaviour is expected in
this case.

3. Lattice electrolytes with different discretization

parameters

3.1. Pure DH theory for sc, bcc and fcc lattices with �V1

Let us discuss in more detail the three-dimensional
lattices with the smallest value of the discretization
parameter, �¼ 1. This corresponds to the situation
when each particle occupies one lattice site. Because in
this case there are no lattice sites in the exclusion zone,
the linearized lattice Poisson–Boltzmann equation (7)
can be written in the following form,

�’ðrÞ ¼ �2’ðrÞ � A0�ðrÞ: ð12Þ

The solution of this equation is found via Fourier
transformation,

’ðrÞ ¼ A0
a2

6

Z
k

expðik � rÞ

ðx2 þ 6Þ=ð6� JðkÞÞ
, ð13Þ

where
R
k � ð2pÞ

�3
R p
�p d

3k, and we defined a new lattice
function JðkÞ,

JðkÞ ¼
1

c0

X
nn

expðik � rÞ: ð14Þ

The coefficient A0 can be found with the help of
equation (3),

�’ðr ¼ ð0, 0, 0ÞÞ ¼ �
4pqi
Dv0
¼ �2’ðr ¼ ð0, 0, 0ÞÞ � A0

¼ A0
a2

6

Z
k

1

ððx2 þ 6Þ=6� JðkÞÞ
� A0: ð15Þ

Defining the integrated lattice Green’s function as

PðzÞ ¼

Z
k

1

1� zJðkÞ
, ð16Þ

we obtain from equation (13)

A0 ¼
4pqi
Dv0

1

1� ½x2=ðx2 þ 6Þ�P 6=ðx2 þ 6Þ½ �
: ð17Þ

Thus the average electrostatic potential at the origin
is given by

 i ¼
4pqi
Dv0

a2

6

1

1� ½x2=ðx2 þ 6Þ�P 6=ðx2 þ 6Þ½ �

�

�
6

x2 þ 6
P

6

x2 þ 6

� �
� Pð1Þ

�
, ð18Þ

from which, after applying the Debye charging
procedure as outlined above, the electrostatic free
energy density f

el
can be easily calculated. The ideal

lattice gas contribution to the free energy density is
known [10],

f
id
¼ �

��1
v0

ln ��1 �
1� ��1
v0

ln ð1� ��1Þ, ð19Þ

where ��1 ¼ �1v0 is a reduced density of the free ions.
Now we can perform explicit calculations for the ionic

systems on sc, bcc and fcc three-dimensional lattices.
The lattice functions JðkÞ are given by [10]

JðkÞ ¼

1
3 ðcos k1 þ cos k2 þ cos k3Þ ðscÞ,

cos k1 cos k2 cos k3 ðbccÞ,

1
3 ðcos k1 cos k2 þ cos k2 cos k3

þ cos k1 cos k3Þ ðfccÞ,

8>>>>><
>>>>>:

ð20Þ

with �p � k1, k2, k3 � p. The corresponding integrated
lattice Green’s functions can be evaluated numeri-
cally exactly by using the fact that they can be expressed
in terms of elliptic integrals [10, 25].

The thermodynamic properties and phase behaviour
of lattice electrolytes on sc, bcc and fcc lattices are
explicitly calculated from equations (1), (18) and (19).
The predicted phase coexistence curves are plotted in
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figure 2, while the critical parameters are given in table 1.
To analyse the effect of different discretizations we
also present in figure 2 and table 1 the phase diagram
and critical parameters for the pure DH model of
continuum (� ¼ 1) hard-core ionic fluids [23]. It can be
seen that the critical temperatures for lattice models are
approximately 30% higher than the corresponding
continuum value. At the same time the thermodynamic
properties and critical parameters of the lattice pure
DH models are approaching the continuum model
as the number of nearest neighbours grows from
c0 ¼ 6 (sc lattice) to c0 ¼ 12 (fcc lattice), as expected.
It also should be noted that in the lattice models the
predicted phase coexistence curves have a physically
reasonable behaviour in the limit of high density and
T!0, in contrast to the original lattice DH theories
[10]. This is due to the fact that the presented theoretical
method correctly describes the average potential  at all
densities of charged particles.

3.2. Pure DH theory for sc lattice with
�V21=2, 31=2 and 2

Now we can examine the lattice models of electrolytes
with discretization parameters �>1. Thermodynamic

properties will be expressed in terms of the reduced
density and the reduced temperature, namely,

��1 ¼ ða�Þ
3�1 and T � ¼

kBTDa�

q20
: ð21Þ

Consider first the ionic lattice model with � ¼ 21=2.
In this case the exclusion zone around any charged
particle consists of the lattice central site, where the
charge is located, and 6 nearest-neighbour lattice sites
where no other charges can be found due to geometrical
constraints: see figure 1. Then the linearized lattice
Poisson–Boltzmann equation (7) yields

�’ðrÞ ¼ �2’ðrÞ � A0�ðrÞ � A1

X
nn

�ðr� annÞ, ð22Þ

where ann describe the position of the lattice sites in
the exclusion zone outside the central site. The solution
of this equation can be found again using the
Fourier transformation and it is given by

’ðrÞ ¼ A0
a2

6

Z
k

expðik � rÞ

ðx2 þ 6Þ=6� JðkÞ

þ 6A1
a2

6

Z
k

JðkÞ expðik � rÞ

ðx2 þ 6Þ=6� JðkÞ
: ð23Þ

The boundary conditions to determine the coefficients
A0 and A1 are found from equations (3) and (5):

�
4pqi
Dv0
¼ �2’ðr ¼ ð0, 0, 0ÞÞ � A0,

0 ¼ �2’ðr ¼ ð1, 0, 0ÞÞ � A1: ð24Þ

From equations (23) and (24) we derive

A0¼
4pqi
Dv0

�
ð6þx2Þð�1þð1=6Þx2ð6þx2Þð�1þP 6=ðx2þ6Þ

� �� 	
�ð1þx2Þð6þx2Þþx2ð7þx2ÞP 6=ðx2þ6Þð Þ

,

ð25Þ

A1 ¼ �
4pqi
Dv0

�
ð1=6Þx2ð6þ x2Þð�1þ P 6=ðx2 þ 6Þ

� �� 	
�ð1þ x2Þð6þ x2Þ þ x2ð7þ x2ÞP 6=ðx2 þ 6Þð Þ

:

ð26Þ

Thus the average electrostatic potential at the origin
due to all other ions, defined in equation (9), again can

0 0.05 0.1 0.15 0.2 0.25
r∗

0.02

0.04

0.06

0.08

0.1

T*

(a)(b)(c)

(d)

Figure 2. Phase coexistence curves predicted by pure DH
theory for lattice electrolytes with �¼ 1: (a) sc, (b) bcc, (c) fcc.
The predictions from the continuum model for electrolytes
with hard-core interactions [23] are shown in (d).

Table 1. Critical parameters for lattice electrolytes in the
pure DH theory. HC corresponds to the predictions from the

continuum RPM with hard-core interactions [23].

Model T�c ��c

sc 0.084377 0.007978
bcc 0.083793 0.005659
fcc 0.082415 0.004591

HC 0.061912 0.004582
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be expressed in terms of the integrated lattice Green’s
function P(z),

 i ¼
4pqi
Dv0

a2

6

� A00
x2

x2 þ 6
P

6

x2 þ 6

� �
� Pð1Þ

� ��

þ 6A01 P
6

x2 þ 6

� �
� Pð1Þ

� ��
, ð27Þ

where A0j ¼ ðDv0=4pqiÞAj for j¼ 0 and 1. After the
Debye charging procedure, as described above in
equation (11), this equation allows us to calculate the
electrostatic contribution to thermodynamic properties.
The exact expressions for the free energy con-

tributions for the lattice models with �>1 including
hard cores are not known, but for low-densities
expression (19) is still approximately valid. In addition,
the continuum DH calculations [23] suggest that putt-
ing more real hard-core free energy terms does not
change significantly the thermodynamic and critical
properties of the electrolytes. Then the thermodynamic
properties and phase behaviour of the system can be
calculated in a similar way as was done for �¼ 1 lattices.
The critical parameters for the sc lattice model
of electrolytes with � ¼ 21=2 are T �c ¼ 0:069 and
��c ¼ 0:0054.
For the system of charged particles on the lattice

with the discretization parameter � ¼ 31=2 the exclu-
sion zone around any arbitrary ion consists of 19 lattice
sites: 1 central site, 6 nearest-neighbour sites and
12 next-nearest-neighbour sites. For this model the
general linearized lattice Poisson–Boltzmann equation
(7) has the following form:

�’ðrÞ ¼ �2’ðrÞ � A0�ðrÞ � A1

X
nn

�ðr� annÞ

� A2

X
nnn

�ðr� annnÞ, ð28Þ

with annn defining the positions of next-nearest-
neighbour lattice sites. As before, we can determine the
coefficients A0, A1 and A2 with the help of equations (3)
and (5),

�
4pqi
Dv0
¼ �2’ðr ¼ ð0, 0, 0ÞÞ � A0,

0 ¼ �2’ðr ¼ ð1, 0, 0ÞÞ � A1,

0 ¼ �2’ðr ¼ ð1, 1, 0ÞÞ � A2: ð29Þ

Unfortunately, for the lattice models with � > 21=2 the
electrostatic part of the reduced free energy cannot
be expressed only in terms of the integrated lattice

Green’s function. However, for explicit numeric evalua-
tions of the thermodynamic properties the following
equality can be used [22, 26]Z

k

exp½ik � ðlx,my, nzÞ�

	� JðkÞ

¼ 3

Z 1
0

dt expð�3	tÞIlðtÞImðtÞInðtÞ, ð30Þ

where IkðtÞ is a modified Bessel function of the first kind.
Then the thermodynamic calculations indicate that the
critical parameters for the system of charged particles on
the lattice with � ¼ 31=2 are given by T�c ¼ 0:063 and
��c ¼ 0:0047.

A similar procedure can be performed for the lattice
model of electrolytes with the discretization parameter
�¼ 2. The schematic picture for this model is shown
in figure 1. In this case there are 27 lattice sites in the
exclusion zone. The general linearized lattice Poisson–
Boltzmann equation (7) can be written as

�’ðrÞ ¼ �2’ðrÞ � A0�ðrÞ � A1

X
nn

�ðr� annÞ

� A2

X
nnn

�ðr� annnÞ � A3

X
nnn

�ðr� annnÞ: ð31Þ

The solution of this equation leads to the determination
of the average electrostatic potential, which allows
one to obtain the electrostatic contribution to the free
energy density. The resulting thermodynamic calcula-
tions yield the following values of the critical parameters
for this model: T �c ¼ 0:066 and ��c ¼ 0:0060.

Critical parameters for lattice models of ionic systems
with different discretizations, obtained in pure DH
theory, are shown in figure 3 as a function of 1=�2. This
scaling is based on heuristic arguments as discussed in
[15, 18]. It can be seen that the increase in the
discretization parameter � generally lowers the values
of critical temperature and density, although the
dependence is non-monotonic. This noisy behaviour
of critical parameters, especially for non-integer �,
has also been observed in Monte Carlo computer
simulations of lattice models with large � � 5 [15].

3.3. Bjerrum ion pairing for lattices with fV1

It is known that the pure Debye–Hückel theory, which
takes into account only free ions, is not successful for
the description of thermodynamic properties of electro-
lytes at low temperatures [10, 23]. At these conditions
the positive and negative particles have a tendency to
stick together in ion pairs. The framework of the lattice
description of ionic systems is very convenient for
complete analysis of the process of ion pairing, and it
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avoids the problem encountered in the continuum
models of electrolytes [10, 23].
Here we consider the pairing as a reversible chemical

reaction of the association of positive and negative
ions and the production of neutral pairs. This process is
controlled by equilibrium constant K(T), which can be
determined from the densities of different species.
Ion pairs are specified by a density �2 and a chemical
potential �2. In the simplest Debye–Hückel–Bjerrum
(DHBj) approximation we neglect the Coulombic
interactions between ion pairs and free charged particles
[10, 23].
The condition for chemical equilibrium between the

ion pairs and free ions means that �2 ¼ �þ þ �� ¼ �1.
Let us introduce thermodynamic activities of the
particles in the system:

z1 ¼ 2zþ ¼ 2z�, z1 ¼
2
1

L3
1

e�1 , z2 ¼

2

L6
2

e�2 , ð32Þ

where Li denotes the de Broglie wavelengths and
Lþ ¼ L� ¼ L1 ¼ L2; the parameters 
i define the
appropriate internal configurational partition functions
[10, 23]. The chemical equilibrium condition can be
expressed in the form of the mass-action law,
z2 ¼ ð1=4ÞKz

2
1, which yields for equilibrium constant

K(T),

KðTÞ ¼ 
2ðTÞ ¼
X
nn

exp½��q0’ðannÞ�

¼ c0 exp½��q0’ðannÞ�: ð33Þ

With the help of Widom’s potential-distribution
theorem [10, 27], the chemical potential for free ions is
given by

�1 ¼ ln
��1

1� ��1 � 2��2

� �
þ ln

L3
1


1

� �
þ �el

1 : ð34Þ

To obtain the corresponding expression for the chemical
potential of ion pairs we use the Bethe approximation
[10, 13, 28]. In this case it yields

z2 ¼
ð2��2=c0Þ 1� ð2�

�
2=c0Þ

� 	
ð1� ��1 � 2��2Þ

2
, ð35Þ

and, finally,

�2 ¼ ln
ð2��2=c0Þ 1� ð2�

�
2=c0Þ

� 	
ð1� ��1 � 2��2Þ

2

 !
þ ln

L6
2


2

� �
: ð36Þ

Using the expression for the mass-action law and
equations (32), (34) and (36), we obtain

��2 ¼
c0
4

"
1� 1� c0ð�

�
1Þ

2
�

� exp
2pa3

3T�v0

Pð6=ðx2þ6ÞÞ�1

ð1�ðx2Þ=ðx2þ6ÞÞPð6=ðx2þ6ÞÞ

� �� 
�1=2
#
:

ð37Þ

This expression specifies the density of ion pairs in terms
of densities of free charged particles.

Because the ion pairs are neutral, in the DHBj
approximation they do not contribute to the electro-
static free energy. Thus,

�ff ¼ f
id
ð��1, �

�
2Þ þ

�ff elð��1Þ, ð38Þ
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Figure 3. Critical parameters for lattice models of electro-
lytes for pure DH theory as a function of inverse squared
lattice discretization parameters � for simple cubic lattices:
(a) critical temperatures and (b) critical densities.
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where the ideal contribution to free energy is given
by [10]

�ff idð��1, �
�
2Þ ¼ �

�
1 ln ��1 � ð1� �

�
1 � 2��2Þ ln ð1� �

�
1 � 2��2Þ

� ��2 ln �
�
2 � ð�

�
2 � 3Þ ln ð1� 2��2=c0Þ: ð39Þ

The phase coexistence curve for the sc lattice in the
DHBj approximation is shown in figure 4. The critical
temperature is slightly lower, while the critical density is
much larger than in the pure DH approximation.
However, it also has an unphysical banana-like shape,
and this is is due to the neglect of electrostatic
interactions of ion pairs with free charged particles,
as explained for continuum and lattice models of
electrolytes [10, 23].

3.4. Dipole–ion interactions for lattices with fV1

Clearly unphysical phase behaviour in the DHBj
approximation is due to the fact that the properties
of ion pairs as dipoles are not taken into account.
As was shown earlier [10, 23], for the realistic descrip-
tion of ionic fluids it is important to consider the ion
pairs as dipoles that interact with residual free charged
particles. These solvation effects eliminate the unphysi-
cal phase behaviour and provide a better agreement
between the calculated critical parameters and the
parameters estimated from the computer simulations
[10, 23].
Let us consider an arbitrary dipole particle that

occupies 2 neighbouring lattice sites. Let us assume that
the positive charge of the particle is at site ð0, 0, 0Þ, while
the negative charge is at ð1, 0, 0Þ. The linearized lattice

Poisson–Boltzmann equation (7) in this case can be
written in the following form,

�’ðrÞ ¼ �2’ðrÞ � A0�ðrÞ � A1�ðr� ð1, 0, 0ÞÞ: ð40Þ

Comparing with equation (12), we note that the last 2
terms in this expression reflect the fact that the particle is
a dipole, consisting of two opposite charges.
Equation (40) can be solved as before,

’ðrÞ ¼
a2

6

Z
k

A0 þ A1 exp½ik � ð�1, 0, 0Þ�

ðx2 þ 6Þ=ð6� JðkÞÞ
expðik � rÞ, ð41Þ

with coefficients A0 and A1 determined from the
following conditions:

�’ðr ¼ ð0, 0, 0ÞÞ ¼ �
4pqþ
Dv0
¼ �2’ðr ¼ ð0, 0, 0ÞÞ � A0,

ð42Þ

and

�’ðr ¼ ð1, 0, 0ÞÞ ¼ �
4pq�
Dv0
¼ �2’ðr ¼ ð1, 0, 0ÞÞ � A1:

ð43Þ

These equations lead to the expression for the average
electrostatic potential  DI

i due to all ions except the
positive ion fixed at ð0, 0, 0Þ and negative ion fixed at
ð1, 0, 0Þ,

 DI
i ¼

4pqi
Dv0

a2

6

x2 1� P 6=ðx2 þ 6Þ
� �� �

6� x2 þ ðx4=ðx2 þ 6ÞÞP 6=ðx2 þ 6Þð Þ

� �

¼
4pqi
Dv0

a2

6
Gðx2Þ, ð44Þ

where we defined an auxiliary function Gðx2Þ,

Gðx2Þ ¼
x2 1� P 6=ðx2 þ 6Þ

� �� �
6� x2 þ ðx4=ðx2 þ 6ÞÞP 6=ðx2 þ 6Þð Þ

: ð45Þ

The contribution to the free energy density due to the
interactions between dipoles and free ions can be
calculated from

�ffDI ¼ �
2p��2
3T�v0

1

x2

Z x2

0

Gðx2Þ dx2: ð46Þ

The overall free energy density of the system can be
written as

�ff ¼ �ff idð��1, �
�
2Þ þ

�ff elð��1Þ þ
�ff DI, ð47Þ
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Figure 4. Phase coexistence curves of ionic systems
calculated for (a) sc lattice in the DHBj approximation; and
using the full DHBjDI approach for (b) sc, (c) bcc and (d) fcc
lattices.

2870 M. N. Artyomov and A. B. Kolomeisky



where �ff idð��1, �
�
2Þ is given by equation (38). From these

equations all thermodynamic properties can be
obtained.
The resulting phase coexistence curves and the critical

parameters for sc, bcc and fcc lattices estimated using
the full DHBjDI approach are presented in figure 4 and
table 2, respectively. The predicted critical temperatures
are decreasing as the number of nearest neighbours goes
up, but they are still 25–30% higher than the correspon-
ding values for the continuum DHBjDI theory [23] and
for the Monte carlo simulations [7, 15, 29]. At the same
time, the critical densities are approaching the predic-
tions of continuum RPM calculations, while deviating
significantly from the computer simulation estimates
[7, 23, 29].

4. Summary and conclusions

A theoretical investigation of ionic systems on lattices
with different discretizations is presented. A general
lattice theory, based on the Debye–Hückel approach, is
developed for lattices with any discretization parameter.
The theory is applied for explicit calculations of
thermodynamic properties, phase behaviour and critical
parameters for several lattice models of electrolytes.
The simplest version of general lattice theory, the

pure Debye–Hückel theory that takes into account only
the free ions, is utilized for obtaining the thermody-
namic properties of sc, bcc and fcc lattices for the
discretization parameter �¼ 1, and for sc lattices with
� ¼ 21=2, 31=2 and 2. All considered cases exhibit the
low-density gas–liquid phase transitions. As expected,
with the increase in the lattice discretization parameter �
the critical parameters, generally, are decreasing and
approaching the values obtained in the continuum RPM
treatment of ionic fluids [23] which corresponds to
the � ¼ 1 case. The behaviour of the critical parameters
is non-monotonic, especially for non-integer �, in
agreement with observations from the latest Monte
Carlo computer simulations for large discretization
parameters (� � 5) [15].

For ionic fluids on the sc, bcc and fcc lattices
with �¼ 1, a more realistic theoretical description,
which takes into account the creation of ion pairs and
the ion–dipole interactions, is developed. The considera-
tion of ion pairs as neutral species (the DHBj approach)
slightly lowers the critical temperature and signifi-
cantly increases the critical density, while the overall
phase coexistence curves have unphysical banana-like
shapes. This unphysical behaviour is cured when the
ion pairs are treated as dipoles that interact with the
residual free charged particles. The resulting critical
temperatures decrease even more, while the values for
critical densities are also lower. The critical temperatures
for the lattice electrolytes are slightly higher than the
continuum RPM values and the computer simulation
estimates. The predicted critical densities for the lattice
models are essentially the same as in the correspond-
ing continuum models for electrolytes. However, they
are much lower than the critical densities from Monte
Carlo simulations. This behaviour is typical for lattice
models.

Our theoretical approach allows us to calculate the
thermodynamic properties of ionic systems at low
densities. However, at higher densities the sublattice
ordering becomes very important in sc and bcc lattice
models of electrolytes [8, 10]. The original lattice Debye–
Hückel approach [10] was able to capture the ordering
processes. It was predicted that the sublattice ordering
would suppress the gas–liquid phase coexistence and the
tricritical point would appear, in accord with recent
lattice computer simulations [22]. The predicted tricri-
tical density was in agreement with the estimates from
Monte Carlo computer simulations [22], while the
critical temperature was overestimated. We plan to
investigate the sublattice ordering using the modified
lattice DH method, developed in this paper, in the near
future. In addition, our theoretical method might be
used to investigate many other problems related to ionic
fluids, such as the effect of additional short-range
interactions, the size asymmetry and charge asymmetry,
and the multi-component mixtures.
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