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Abstract

All chemical processes exhibit two main universal features. They are stochastic

because chemical reactions might happen only after random successful colli-

sions of reacting species, and they are dynamic because the amount of reac-

tants and products changes with time. Since biological processes rely heavily

on specific chemical reactions, the stochasticity and dynamics are also crucial

features for all living systems. To understand the molecular mechanisms of

chemical and biological processes, it is important to develop and apply theoret-

ical methods that fully incorporate the randomness and dynamic nature of

these systems. In recent years, there have been significant advances in formu-

lating and exploring such theoretical methods. As an illustration of such devel-

opments, in this review the recent applications of stochastic kinetic models for

various biological processes are discussed. Specifically, we focus on applying

these theoretical approaches to investigate the biological signaling, clearance

of bacteria under antibiotics, T cells activation in the immune system, and can-

cer initiation dynamics. The main advantage of the presented stochastic kinetic

models is that they generally can be solved analytically, allowing to clarify the

underlying microscopic picture, as well as to explain the existing experimental

observations and to make new testable predictions. This theoretical approach

becomes a powerful tool in uncovering the molecular mechanisms of complex

natural phenomena.
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1 | INTRODUCTION

Chemical reactions are unique dynamic phenomena that occur when several original types of molecules, called reac-
tants, transform into other types of molecules, called products. This is the result of complex molecular interactions that
typically take place after reactant molecules are able to collide with each other, leading to breaking old and creating
new chemical bonds. The crucial properties of chemical reactions are their stochastic nature and complex dynamic
behavior.1 Due to random collision of reactants, typical chemical reactions have broad distributions of time scales that
characterize the completion of these processes. The composition of the system where chemical reactions are taking
place also evolves with time. Various chemical kinetic methods, both experimental and theoretical, have been devel-
oped to comprehensively analyze temporal and spatial evolution of chemical reactions, providing important insights on
the underlying molecular mechanisms.1

Chemical reactions are obviously critically important for all biological systems.2 Traditionally, deterministic macro-
scopic kinetic models have been utilized to describe the chemical aspects of most cellular processes.3 In this approach,
it is assumed that components of the system are always well mixed and easily available, and the temporal evolution of
concentrations of participating molecules can be obtained by solving corresponding differential equations that describe
the temporal evolution of every type of species. However, there are multiple limitations for the application of determin-
istic macroscopic kinetic models for understanding the processes in living systems. First, in biological systems the copy
numbers of participating molecular species can be very low, which, in turn, can give rise to significant fluctuations in
concentrations and a wide spectrum of relevant time scales.3–5 In addition, the deterministic models typically describe
only the average stationary properties of the system, and they fail to capture a complex transient behavior with transi-
tions between different states.3,5 Furthermore, the importance of mesoscopic stochastic dynamic models have been
especially realized recently with the developments in single-molecule experimental techniques that allowed to probe
complex biological systems with unprecedented spatial and temporal resolutions.6,7 Clearly, to understand better the
microscopic picture of cellular processes, one needs to utilize theoretical frameworks that comprehensively accounts for
both stochastic and dynamic effects.

In recent years, a significant progress has been achieved in developing various theoretical methods that better reflect
the random dynamic nature of biological processes.5–8 The main idea of such stochastic kinetic models (although other
labels for such models have been also used) is that the investigated processes in the underlying biological system can be
viewed as a set of continuous-time transitions between discrete states. These discrete states, depending on the context
of the problem, might reflect different spatial positions, different number of cells, or different molecular conformations.
The transitions between these states are random and specified by the local dynamic rules that depend on molecular
interactions and energy changes in the system. In this review, several stochastic kinetic models and their applications
for various biological phenomena are presented. We specifically focus on microscopic mechanisms of morphogen gradi-
ents formation, stochastic clearance of bacteria by antibiotics, T cell activation in the immune system, and cancer initia-
tion dynamics. The main advantage of this approach is the ability to obtain explicit analytic descriptions for most
relevant properties of these systems, allowing for better understanding of underlying molecular mechanisms. Our goal
is not only to illustrate the method of stochastic kinetic models but also to show that this approach is a powerful tool in
studying complex chemical and biological processes.

2 | MORPHOGEN GRADIENT FORMATION

Development of complex multicellular organisms from a single embryonic cell remains one of the most fascinating and
still not fully understood fundamental biological processes.9–11 It is known that at some time the dividing embryo cells
start to differentiate, producing complex patterns that eventually transform into specific tissues and organs. A critical
role of several classes of protein molecules, known as morphogens, is now well established.9–12 After intensive experi-
mental investigations,13–15 the following picture emerged about the activities of these biological signaling molecules.16

At some stage of the development process, one or several embryo cells start to produce morphogens into the medium in
which other embryo cells coexist. This is a symmetry-breaking event that allows to eventually distinguish different parts
of the growing embryo system. As the sign of this symmetry breaking, the signaling molecules via different distribution
mechanisms establish a non-uniform concentration profile as schematically shown in Figure 1. Different genes are
being then activated at the underlying embryo cells depending on the local concentration of morphogens: see Figure 1.
This leads to the final pattern formation and full differentiation of tissues and organs in the developed organisms.
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This picture of how the morphogens are operating raised several important questions: what are the microscopic
mechanisms of the formation of non-uniform concentration profiles (also called morphogen gradients) and how fast
they can be established? Various theoretical ideas to answer these questions have been proposed.13–23 It is widely
believed that the morphogen gradients are the result of complex action of chemical and physical forces.13–15,24,25 The
signaling molecules might associate to cell receptors and be effectively removed from the system by initiating the bio-
chemical cascades inside the embryo cells that activate specific genes, but they can also diffuse in the medium. These
arguments led to the development of the simplest, but still the most widely utilized, theoretical approach, which is
known as a synthesis–diffusion–degradation (SDD) model.13–15,24,25 It is also important to note that the morphogen mol-
ecules are removed from the system at specific sites that are spatially separated from each other (cell receptors at differ-
ent embryo cells). This indicates that the formation of morphogen gradient must be considered as a discrete
biochemical process. For this reason, we present here a discrete-state stochastic model that investigates the molecular
origin of the fast and robust development of morphogen gradients.17,26 Our aim here is to show how the explicit analy-
sis of such theoretical model clarifies many aspects of this complex biological phenomenon.

Let us consider a model illustrated in Figure 2. Given the fact that most experimental studies on the morphogen gra-
dient formation explore the Drosophila where embryo cells are arranged in a quasi-one-dimensional order,13,24 the pro-
posed theoretical approach views the system a linear semi-infinite chain of lattice sites n ≥ 0. Each site corresponds to a
different embryo cell. The model assumes that morphogens are created at the origin (n = 0) with a rate Q. Then the

Morphogen

Embryo cells

FIGURE 1 A schematic cartoon of how the non-uniform concentration profile of morphogen molecules leads to different activation of

underlying embryo molecules. For the region before threshold 1, cells will activate only a “red” gene; for the region between threshold 1 and

threshold 2, cells will activate only a “green” gene; and for the region after threshold 2, cells will activate only a “yellow” gene

Creation
Diffusion

Degradation

FIGURE 2 A scheme for the simplest one-dimensional discrete-state stochastic model for the formation of morphogen gradient.

Signaling molecules are produced at the site 0 (shown in red) with a rate Q. Morphogens might diffuse along the lattice to the neighboring

sites with a rate u, or they might be degraded with a rate k
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signaling molecules can diffuse along the lattice with a rate u, while they can also be degraded (removed from the sys-
tem) at any site with a rate k: see Figure 1.

Because the morphogens are independent of each other, it is convenient to adopt a single-molecule view of the pro-
cesses and follow the changes in the particle occupations. For this purpose, one can introduce a function Pn(t) which is
defined as the probability density to find the morphogen molecule at the site n at time t. The evolution of this probabil-
ity is governed by the following master equations,

dP0 tð Þ
dt

¼QþuP1 tð Þ� uþkð ÞP0 tð Þ, ð1Þ

for n = 0; and

dPn tð Þ
dt

¼ u Pn�1 tð ÞþPnþ1 tð Þ½ �� 2uþkð ÞPn tð Þ, ð2Þ

for n > 0. These expressions simply reflect the conservation of the probability of finding the morphogen at the given
location. At large times, when dPn tð Þ

dt ¼ 0, the system reaches the steady-state conditions, and these equations can be eas-
ily solved,17,27 producing an exponentially decaying concentration profile,

P sð Þ
n ¼ 2Qxn

kþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ4uk

p , ð3Þ

with

x¼ 2uþk�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ4uk

p
2u

: ð4Þ

These predictions qualitatively agree with multiple observations of morphogen gradients in different biological
systems.28–31

In Figure 3a, we present typical concentration profiles of the signaling molecules as predicted by this theoretical
model. One can see that the concentration of signaling molecules decreases for larger degradation rates, and the station-
ary morphogen gradient has a decay length

λ¼� 1
ln x

, ð5Þ

which in the limit of fast diffusion (u� k), also known as the continuum limit, reduces to a well-known relation
λ’ ffiffiffiffiffiffiffiffi

u=k
p

.
17,32 This result emphasizes that the characteristic length scales created by the nonuniform concentration pro-

files of signaling molecules are due to the balance between the diffusion and the degradation processes. It also suggests
how the thresholds in the developmental pattern formation might be specifically regulated at the cellular lever, provid-
ing an important insight on the mechanisms of these complex biological processes.

This theoretical approach is also able to evaluate the dynamics of approaching to the stationary properties and to
resolve the apparent paradox of slow morphogen diffusion and fast formation of the morphogen gradient.16,17,28,33 This
paradox is based on the following observations. Experiments on measuring the diffusion of bicoid morphogen proteins
in Drosophila embryo (size L � 400 μm) determined that signaling molecules diffuse not so fast with D � 1 μm2/s. One
could argue then that if the morphogen molecules are produced at one end of the embryo, to reach the other end to
establish the gradient would need a time of at least τ ’ L 2/D � 3000 min, while the experiments clearly observe that
the morphogen gradient was created in <100 min,28 that is, almost two orders of magnitude faster.

These controversial observations were explained later by applying the method developed by Berezhkovskii
et al.22,32,34 According to this approach, the time scales to establish the morphogen gradients are given by the local
relaxation times to reach the stationary state from the originally empty system (before the morphogen production
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starts). These times are labeled as local accumulation times (LAT), and they are closely related to so-called local relaxa-
tion functions,32

R n; tð Þ¼ P n; tð Þ�P sð Þ nð Þ
P n; t¼ 0ð Þ�P sð Þ nð Þ¼ 1� P n; tð Þ

P sð Þ nð Þ : ð6Þ

One could easily understand the physical meaning of these functions. They can be viewed as the relative distance of
the system from the stationary state at the given location. At t = 0, such distance is one (R = 1), and it approaches zero
at t!∞ when the steady-state at the given location is already reached. One could also see that � ∂R n, tð Þ

∂t

� �
is the proba-

bility density to reach the stationary state at the site n at time t. Then using the Laplace transform of the function,eR n,sð Þ¼ R∞0 R n; tð Þe�stdt, it can be shown that the LAT are given by

t nð Þ¼�
Z ∞

0
t
∂R n; tð Þ

∂t
dt¼

Z ∞

0
R n, tð Þdt¼ eR n;s¼ 0ð Þ: ð7Þ

From this relation, the explicit expression for the local accumulation times in the discrete-state stochastic from
Figure 2 can be found,17
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FIGURE 3 (a) Stationary-state density profiles of morphogen molecules as a function of the distance from the production site for

different degradation rates. (b) Relaxation times to reach the stationary-state morphogen gradients as a function of the distance from the

production site for different degradation rates. The following parameters were used in calculations: Q = 10 s�1 and u = 100 s�1
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t nð Þ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ4uk

p 2uþkþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ4uk

p
kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ4uk

p þn

" #
, ð8Þ

which in the continuum limit (u� k) produces

t nð Þ¼ 1
2k

1þn
λ

� �
: ð9Þ

The results for the relaxation times to reach the steady state are presented in Figure 3b. One can see that they
depend linearly on the distance from the source, and increasing the degradation rate accelerates reaching the stationary
state. This observation can be easily understood by comparing the corresponding morphogen gradients (Figure 3a). For
larger degradation rates, the stationary concentration of signaling molecules is lower, and then it can be reached faster
from the originally empty system.

The model was successfully applied for analyzing the morphogen gradient formation of bicoid proteins in fruit fly
embryos.19,28,35 Experimental measurements suggest that the decay length of the concentration profile of signaling mol-
ecules is λ ’ 60 μm, which allowed researchers to estimate the relaxation to reach the stationary state at the furthest
end of the embryo (L ’ 400 μm) using the simplest SDD model (Equation (8)) as �200 min. This should be compared
with �100 min observed in experiments. Considering more realistic models of longer spatially localized exponentially
distributed source regions,16,26 however, brings the theoretical estimate much closer to experimental observations,
suggesting that this theoretical approach probably captures the main features of the morphogen gradient formation.

But the most important result of the discrete-state stochastic model is the ability to explain the faster than expected
formation of the morphogen gradients.16,17 One can see it in Figure 3b that shows the linear dependence of LAT (t
(n) � n), in contrast to expected quadratic scaling for the relevant times scales. The linear scaling is the reason for
quickly reaching the stationary state in the system. From microscopic point of view, this acceleration can be explained
by noticing the important role of the removal of the morphogen molecules from the system. At each embryo cell, there
is a non-zero probability for signaling molecules to be degraded. Only the fastest morphogen particles will survive,
effectively leading to the acceleration of the whole process of the morphogen gradient formation. This might be also
viewed as an example of selection effect or selection bias, which is a well-known concept in statistics. Another way to
look into this phenomenon is to associate the degradation with en effective potential Ueff(n) that effectively drives the
morphogen particles away from the source. At the molecular level, each morphogen particle has equal probability to go
in both directions (see Figure 1), but more signaling molecules are removed further away from the source (larger n)
because they came to the system earlier at the site n = 0. This leads to the creation of the concentration gradient that
moves particles fast away from the production source. This potential can estimated from the steady-state concentration
profile,16,17

Ueff nð Þ’ kBT lnPs
n ¼n ln x¼�n

λ
: ð10Þ

This strong linear potential corresponds to a constant effective force at every site,

Feff ¼� ∂Ueff nð Þ
∂n

¼ 1
λ
, ð11Þ

that displaces the morphogen particles away from the production region. This picture of the effective potential due to
the degradation processes also explains the linear dependence of LAT on the distance from the source (see Figure 3b).
This is because the process of the formation of the morphogen gradient is a driven process with the expected linear scal-
ing as a function of the distance. It is not the unbiased diffusion with quadratic scaling, as one would naively expect.
These arguments fully explain the fast formation of the morphogen gradients and resolve the paradox of slow diffusion.

A discrete-state stochastic SDD model provides a comprehensive description of microscopic process of the formation
of morphogen gradients. It argues that the non-uniform concentration profiles, required in order to properly transfer
the genetic information, are created as a balance between the molecular diffusion of morphogen particles and their deg-
radation. However, the removal of signaling due to degradation is critically important for accelerating the dynamics of
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the formation of stationary profiles. This theoretical approach is able to successfully explain the existing experimental
observations. Because of the explicit nature of these discrete-state stochastic models, they seem to be a very useful
approach to quantitatively investigate the complex mechanisms of biological development processes.

3 | STOCHASTIC CLEARANCE OF BACTERIA

Another example of successful application of the stochastic kinetic approach is theoretical investigations of bacterial
clearance by antibiotics or antimicrobial peptides.36,37 It is well recognized that the rise of pathogenic bacteria that are
resistant to antibiotics is one of the most critical global health issues. This is related with the fact that current antibiotic
treatments cannot fully eradicate the bacteria that are susceptible to them, allowing the remaining microbes to develop
the resistance to the medical drugs.38,39 Current experimental and theoretical studies of bacterial clearance by antibi-
otics concentrate mostly on the removal of large quantities of microbes, applying for these purposes a deterministic
analysis.40–42 The central quantity in this deterministic framework is a minimal inhibitory concentration (MIC), which
is defined as a minimal drug concentration that fully inhibits bacterial growth.42–44 It is widely assumed that MIC is the
critical antibiotic concentration above which the bacteria will be always eliminated, but for the lower concentrations
the infection will not be stopped.

However, there is an increasing number of experimental evidences suggesting that the deterministic approach fails
to properly describe the clearance of small bacterial populations where stochastic effects are dominant.36 This is espe-
cially important for the systems where a small number of surviving bacteria can easily restart the infection, as happens,
for example, for Salmonella and Shigella bacteria.45–47 In addition, the surviving bacterial cells can develop the antibi-
otic resistance faster, and only the full bacterial eradication will stop the infection.48–52 Recent experimental advances
allowed researchers to quantify the dynamics of antibiotic-induced removal of small populations of bacteria,53 provid-
ing the ground for the development of corresponding theoretical methods.36,39,53 Let us present a specific discrete-state
model of bacterial clearance that illustrates the power of the stochastic kinetic approach in uncovering the microscopic
mechanisms of this complex biological phenomenon.

To describe the bacterial clearance dynamics, a simple discrete-state stochastic model, as presented in Figure 4a, is
considered.36 It describes an organism with some number of bacterial cells inside which is also simultaneously treated
by the constant concentration of antibiotics to remove the infection. There are N + 1 possible states in the system. The
states labeled as n correspond to the situation with exactly n bacteria cells inside the host organism. The state n = 0
describes the system where all bacterial cells are eradicated, which is the final goal of the application of antibiotics. It is
labeled as an extinction state (see Figure 4a). The state n = N describes the situation when the overall system goes into
another metabolic state. It could be the situation when bacteria damage the cell membrane and normal biochemical
processes inside the host organism, which might even lead to the death. It could also trigger a strong immune response
from the host organism. In any case, the dynamics in the system changes dramatically, and we label this state as a fixa-
tion state (see Figure 4a).

While the bacterial cell growth and death involve multiple complicated physical and chemical processes, to simplify
the analysis, it is assumed that dynamics in the system can be described by only two effective stochastic processes.36

The bacterial cells can grow with a rate λ or they can dye with a rate ϕ. This means that transitions in the system follow
the sequence of the states presented in Figure 4a. From the state n, the system can move to the state n + 1 with the
overall rate nλ, increasing the level of bacterial infection. It can also move to the state n � 1 with the overall rate nϕ,
decreasing the level of bacterial infection. Additionally, it is assumed that the bacterial cell growth rate is independent
of antibiotic concentration, while the cell death rate is a function of the antibiotic concentration.54 In the simplest case,
the linear dependence is assumed but experimental measurements suggest more complex relations between the death
rate and the concentration of antibiotics.54

Analysis of the system suggests that there are only two outcomes in the bacterial clearance process. The infection is
fully removed when the system reaches the state 0, or the antibiotic treatment fails when the system reaches the state
N. These arguments indicate that first arrivals to these absorbing final states specify the critical properties of the bacte-
rial clearance. Then it is convenient to utilize a first-passage theoretical method55,56 to analyze the dynamics in the sys-
tem.36 For this purpose, one can introduce a function Fn(t), which is defined as a probability density function to clear
the system from infection at time t if the initial number of bacterial cells in the host organism (known as an inoculum
size) is equal to n (1 ≤ n ≤ N � 1). The temporal evolution of these probability functions are given by the so-called
backward master equations,36,55,56
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dFn tð Þ
dt

¼nϕFn�1 tð ÞþnλFnþ1 tð Þ�n λþϕð ÞFn tð Þ: ð12Þ

These equations describe the conservation of the probability density.
It is important to discuss the physical meaning of the first-passage probability density function Fn(t).

56 Imagine that
we start from the state n at t = 0, and the trajectories of all possible modifications in the system as a function of time
are followed. These “measurements” are repeated many times starting from the same initial site n. To understand the
dynamics of bacterial clearance, we record only those trajectories that come to the extinction state or to the fixation
state in the time interval between t and t + dt. Such events are considered as successful events. Then the fraction of
these successful events that end up at the state n = 0 gives the probability density function Fn(t). In other words, Fn(t)
describes the conditional first-passage time distribution to reach the extinction state.

The distributions of extinction times Fn(t) can be obtained analytically, providing a convenient path to analyze the
dynamics of bacterial clearance for this model.36 More specifically, two quantities are the most relevant for this analy-
sis.36 One of them is an extinction probability fn, which is defined as the overall probability for the bacterial population

N–1
N–1

N

n
N

FIGURE 4 (a) Schematic view of the stochastic model for the clearance of bacteria. Each state n (n = 0, 1, …, N) represents a bacterial
population with n cells. The states 0 and N correspond to the bacterial eradication (no cells in the system), and the fixation, respectively.

From each state n, the bacterial population can change to the state n + 1 (growth) with a total rate nλ, or it can jump to the state n � 1

(shrinking) with a total rate nϕ. We define normalized death rate, x as the ratio of death rate and growth rate, x = ϕ/λ. Analytical

calculations of extinction probabilities (b) over n � x parameter space for N = 50; (c) for a specific mid-size inoculum (n = N/2) over N � x

parameter space. The figures are reproduced with permission from Ref. [36]
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with the inoculum size n to completely eradicate the infection. The second is a mean extinction time Tn, which is
defined as the mean first-passage time to reach the extinction state (n = 0) starting initially from the inoculum size n.

It could be shown that the extinction probability is given by the following simple expression,36

f n ¼
xN � xn

xN �1
, ð13Þ

where a new important parameter x = ϕ/λ can be viewed as an effective death rate for the bacterial population normal-
ized over the growth rate. For x > 1, the bacterial clearance due to large antibiotic concentrations dominates over the
cell growth, while for x < 1 (low antibiotic concentrations) the situation reverses. The case x = 1 corresponds to the
antibiotic concentration when the bacterial clearance is balanced by the cell growth, and it can be viewed as the analog
of MIC from the deterministic analysis of this process.

Theoretical predictions for the extinction probabilities are presented in Figure 4b,c. It shows the dependence of the
probability to clear the bacterial infection on the initial size of bacterial population n and on the effective death rate x.
When the bacterial growth rate is equal to the death rate (x = 1), the extinction probability has a very simple
expression,36

f n x¼ 1ð Þ¼N�n
N

: ð14Þ

In this case, the probability of bacterial clearance is given by the relative distance from the initial state n to the fixa-
tion state N. In other words, the smaller the initial number of bacterial cells in the system, the more probable is to clear
them from the host.

For sub-MIC conditions (x < 1), the bacterial growth rate is faster than the death rate, and, as expected, it is harder to
eliminate the infection. The extinction probability in this case (making a realistic assumption that N� 1) behaves like

f n ’ xn: ð15Þ

This indicates that the extinction probability is a decreasing function of the inoculum size n. But, importantly, even
for such sub-MIC conditions the probability of extinction is not equal to zero as postulated by the deterministic
approach. This is a clear sign of stochastic effects in the bacterial clearance. Similar stochastic effects can be exhibited
in the case of large antibiotic concentrations (above MIC, x > 1), when for the realistic case of N!∞ the extinction
probability is given by

f n ’ 1�xn�N : ð16Þ

It approaches to one but never equals to one as assumed in the deterministic approach.
A better indication of the dynamics of bacterial eradication can be obtained by analyzing the mean extinction times.

These are the average times before the infection can be completely cleared from the host organism. They are critically
important for development of new medical strategies as well as to quantify the bacterial tolerance to already existing
antibiotics.57 The idea here is that the longer bacteria can survive at given conditions, the sooner it will develop a resis-
tance to the drug. Theoretical analysis of the discrete-state stochastic model of bacterial clearance provides an explicit
expression for the mean extinction times,36

Tn ¼ 1
λ xN �xnð Þ x�1ð Þ

1�xn

1�xN
XN�1

k¼1

xN �xk
� �

xN�k�1
� �
k

�
Xn�1

k¼1

xN � xk
� �

xn�k�1
� �
k

" #
: ð17Þ

For conditions corresponding to MIC (x = 1), this result modifies into

Tn ¼ 1
λ N�nð Þ

n
N

XN�1

k¼1

N�kð Þ2
k

�
Xn�1

k¼1

N�kð Þ n�kð Þ
k

" #
: ð18Þ
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For large antibiotic concentrations (x > 1 and assuming N!∞) the mean extinction times are given by,

Tn ¼ 1
λ

xn�1
x�1

ln
x

x�1

� �
�
Xn�1

k¼1

1
k

Xn�k�1

j¼0

xj
 !" #

: ð19Þ

At the same time, for sub-MIC conditions (x < 1), it can be shown that

Tn ’ 1
λ

1
n
þ x
nþ1

þ…
� �

: ð20Þ

The results of analytical calculations for the mean extinction times at different conditions are presented in Figure 5.
The mean extinction time is the increasing function of the inoculum size, as illustrated in Figure 5a. This result is
expected because for larger initial bacterial populations it takes longer to completely remove all microbes. More unex-
pected behavior is found for the mean extinction times as the function of different antibiotic concentrations: see
Figure 5b. It is found that T(n) is a non-monotonic function of the parameter x, and the slowest dynamics is observed
for the MIC conditions (x = 1). It is easy to understand why for large antibiotic concentrations (x > 1) the mean extinc-
tion time quickly decreases. This is because for larger x the tendency to eradicate the infection is stronger. However, the
fact that the mean extinction times are also fast for low antibiotic concentrations (x < 1) is rather very surprising since
at these conditions the tendency to grow overcomes the death rates. To understand this observation, one should recall
again the definition of the mean extinction time. It is a conditional mean first-passage time to reach the state n = 0
starting from the state n. The condition is that the time is estimated only for those trajectories that lead to the successful
eradication. Such events are rare for x < 1, but they must be fast in order for the bias to growth transitions not to stop
them. In other words, even for sub-MIC conditions, the bacterial clearance can be fast, but the probability of such
events is low. However, this scenario is typically not feasible in real biological systems.

One could also explain the slowest clearance dynamics for x = 1. Transitions in the system can be viewed as a ran-
dom walk along the lattice of discrete state shown in Figure 4a. Then, the MIC conditions describe an unbiased random
walk (ϕ = λ), which is known to evolve much slower than the biased random walks for x < 1 and x > 1. These argu-
ments suggest a new more practical reinterpretation of the MIC. It is the antibiotic concentration at which the mean
extinction times are maximal (eventually even diverging for very large bacterial populations N!∞).

The discrete-state stochastic model of bacterial clearance presents a comprehensive view on the eradication of infec-
tion by antibiotics. It provides a more physically reasonable definition of the MIC, which deviates from the binary pic-
ture adopted by the deterministic framework. It argues that, when the bacterial populations are not large and stochastic
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FIGURE 5 Analytical calculations for the mean extinction times (in min): (a) as a function of the inoculum size for three different

values of x; and (b) as a function of the parameter x for different inoculum sizes (n = 10, 25, and 40). In all calculations N = 50 and

λ = 1/60 min�1 were utilized. The figures are reproduced with permission from Ref. [36]
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effects become relevant, the probability of clearance might be larger than zero even for the sub-MIC conditions, or less
than one even for the antibiotic concentrations larger than MIC. In addition, this theoretical approach suggests and
explains why the eradication dynamics has a complex non-monotonic dependence on the antibiotic concentrations.
Furthermore, it gives a practical advice on how to apply the antibiotics at the conditions far away from MIC in order to
avoid the expected slowing down in the bacterial clearance dynamics.

4 | KINETIC PROOFREADING MODEL OF T CELL ACTIVATION

Stochastic kinetic models also turned out to be very useful in studying the mechanisms of activation of the adaptive
immune systems, and specifically for understanding the T cells signaling.58–68 T cells are important components of the
immune system of healthy organisms that are critical for detecting and responding to various diseases.59,69 It is believed
that they become activated after T cell receptors (TCR) bind to a specific protein assembly, known as peptide major his-
tocompatibility complex (pMHC) that is found on the surface of antigen-presenting cells. This situation is schematically
shown in Figure 6a.

How T cells are responding to the invasion of foreign pathogens is quite complex.70–72 They must simultaneously
exhibit high degrees of sensitivity, specificity, and the activation must happen fast. This is because the T cells must react
to very few foreign peptides in the medium full of self-peptides that are chemically very similar. The reaction must be
rapid in order for the infection not to affect the host organism. The unique mechanisms of T cells activation stimulated
multiple theoretical and experimental investigations that clarified some aspects of their activities.58,60–65,67,68,73–76 To
illustrate the power of stochastic kinetic models, we present here a simple discrete-state model for T cell signaling.76 It
quantitatively describes all relevant properties of the activation process, allowing to explain the unique sensitivity, spec-
ificity, and speed of the immune T cells.

N–1 N

off
offoff

off

on

FIGURE 6 (a) A schematic description of activation of a T cell during the immune response. The T cell binds to a corresponding TCR

receptor located the antigen presenting cell. If the foreign peptide is identified, the response is activated. (b) A schematic view of the simplest

kinetic proofreading model for the antigen discrimination. Each state n (1 ≤ n ≤ N) corresponds to a complex between TCR and pMHC with

a different degree of phosphorylation. State n = 0 describes the unbound TCR and pMHC species. The immune response is activated when

the system reaches the state n = N and the stationary concentration for this state is achieved. The figures are reproduced with permission

from Ref. [76]
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Although the molecular details of how T cells become activated are still not fully understood, the dominating view
in the field relies on the idea of kinetic proofreading (KPR).59,77,78 According to this approach, the activation is a process
that starts after the binding of TCR to the corresponding pMHC, which is followed by several consecutive phosphoryla-
tion transformations until the final state that can activate the immune response is achieved. However, from any inter-
mediate state the TCR can relax without reaching the final state by simply dissociating from pMHC. This allows T cells
to correct the errors due to binding the wrong peptide complexes. This is critically important because the inappropriate
activation of T cells might lead to serious allergic and autoimmune diseases.59 The KPR mechanisms of controlling the
activation of T cells are supported by various experimental observations.74,75

Theoretical model of T cells activation, presented in Figure 6b, is the simplest KPR model that can be explored for
understanding the underlying processes of the immune system activation.76 It postulates that there are N (n = 1, 2, …,
N) discrete states of association between TCR and pMHC that differ by the level of phosphorylation. The discrete
parameter n measures the degree of phosphorylation of TCR-pMHC complex. In addition, the state n = 0 describes the
situation when the ligand and receptor are not bound to each other. It is assumed that the final phosphorylated state
n = N is capable to start the activation of the immune response by triggering the corresponding biochemical processes
in the host organism. The TCR associates to pMHC with a rate kon, forming the first bound state in the system
(Figure 6b). In the bound state, the TCR–pMHC complex can sequentially phosphorylate with a rate kp. This corre-
sponds to transitions from the state n to n + 1: see Figure 6b. But the TCR can also dissociate from the complex with a
rate koff, and we assume here that it also includes a fast dephosphorylation so that binding of TCR to pMHC can only
happen from the state n = 0 to the state n = 1. The main idea of this theoretical model is that the activation starts when
the system reaches the stationary-state concentration of the final phosphorylated complexes (n = N). This is needed in
order for the system to have a persistent and robust signal for activation.

It is convenient to adopt a single-molecule view of the process and analyze the dynamics of transitions between dif-
ferent states of the single TCR–pMHC complex.76 For this purpose, one can define a function Pn(t) as the probability to
reach the state n at time t. Initially, at t = 0, the system starts in the unbounded state n = 0, that is, the receptor and
the ligand are unbound from each other. These probabilities evolve with time as described by the following master
equations,

dP0 tð Þ
dt

¼ koff
XN
n¼1

Pn tð Þ�konP0 tð Þ, ð21Þ

for n = 0,

dP1 tð Þ
dt

¼ konP0 tð Þ� kpþkoff
� �

P1 tð Þ, ð22Þ

for n = 1,

dPn tð Þ
dt

¼ kpPn�1 tð Þ� kpþkoff
� �

Pn tð Þ, ð23Þ

for 1 < n < N, and

dPN tð Þ
dt

¼ kpPN�1 tð Þ�koffPN tð Þ, ð24Þ

for n = N. Because we consider a single complex, there is an additional normalization condition for probabilities to be
found at different states,

XN
n¼0

Pn tð Þ¼ 1: ð25Þ

12 of 21 TEIMOURI AND KOLOMEISKY



At large times, the system reaches the stationary state and the probability to be found in the final phosphorylation
state N can be explicitly evaluated as:76

PN ¼ kon
konþkoffð Þ

kp
kpþkoff

	 
N�1

ð26Þ

The physical meaning of this expression can be explained using the following arguments. The first factor, kon
konþkoffð Þ,

gives the probability for the system to form the bound TCR–pMHC complex, while the second factor, kp
kpþkoff

� �N�1
, gives

the probability that the bound state is the final phosphorylation state after N� 1 sequential phosphorylation events

[each happening with the probability kp
kpþkoff

� �
].

This theoretical model argues that the immune system activation starts after reaching the fully phosphorylated state
n = N, and for this reason the time to reach the steady-state level of this state is critical in discrimination between self-
peptides and foreign peptides. Note that we already explored such time scales in the analysis of the formation of mor-
phogen gradients (see Section 2). These are local relaxation times that can be easily estimated for the KPR model of
immune system activation,76 yielding

τN ¼ 1
konþkoff

þ N�1
kpþkoff

: ð27Þ

This expression can be interpreted in the following way. The first term gives the time for the system to achieve the
stationary conditions with respect to all bounded and unbounded conformational states. The second term provides the
estimate to reach the final phosphorylation state n = N starting from the first association state n = 1. This is because
after any dissociation (n! 0) the next binding event always leads to the state n = 1, from which N� 1 irreversible steps
are needed in order to be fully phosphorylated.

The KPR model proposes the following mechanism of discrimination between self-peptides and foreign peptides.76

It is argued that for self-ligands the relaxation times before reaching the active state n = N are rapid, and they are faster
than a specific threshold time t0, which is determined by the local biochemical conditions of the organism. At this situa-
tion the activation does not happen. However, the relaxation times for foreign ligands are longer (τN > t0), and the acti-
vation triggers the immune system. Experimental observations suggest that these threshold times vary for different
organisms, but typically they are in the range between 1 and 5 s.58,79,80

The application of the discrete-state stochastic model of T cells activation for two different biological systems is pres-
ented in Figure 7. It shows the calculated relaxation times and different degrees of ligand potency (expressed as EC50)
for various peptides. The ligand potency parameter EC50 is a concentration of the peptide that stimulates the activation
of T cells in 50% cases. This means that the large values of EC50 correspond to a weak immune response, while the
small values of EC50 induce a strong response. Thus, the theoretical model predicts that self-peptides should have large
EC50, while the situation is opposite for foreign ligands where small EC50 values are expected. Figure 7 clearly shows a
separation of experimental observations in two groups. For observations with relaxation times smaller than the thresh-
old (5 s for the upper plot and 2 s for the lower plot in Figure 7), the probability of activating the immune system is low
because of large EC50 values. These are self-peptides. For observations with relaxation times larger than the thresholds,
the immune system will be activated since these are foreign peptides. Thus, the discrete-state stochastic model of T cells
activation not only successfully explains experimental data, but it also provides the microscopic description for the pro-
cesses that lead to the activation of immune system.

5 | CANCER INITIATION DYNAMICS

Our final example of application of stochastic kinetic models for uncovering the mechanisms of complex biological pro-
cesses is related to investigations of cancer initiation dynamics.37,81 Cancer remains one of the most serious health prob-
lems in our society.82–84 It is a set of genetic diseases that result from accumulation of unfavorable mutations in the
living organisms. While the overall biochemical picture of how cancer appears is more or less known, the molecular
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details of the formation of tumors are still not fully understood. One of the most important directions to uncover the micro-
scopic origin of the tumor formation is to analyze the dynamics of cancer initiation and progress.84–86 The idea is that the
dynamics reflects the underlying microscopic mechanisms. The stochastic model presented here addresses this challenge.

We start by considering an originally healthy tissue with N stem cells, as schematically shown in Figure 8. Stem cells are
those that divide and produce new cells.11 The replication process is known to be the main source of possible mutations
because of potential chemical errors during the synthesis of new DNA molecules when these errors are not corrected on time
by DNA repair mechanisms.87,88 This is the main reason we concentrate only on stem cells. At some specific time point, which
is set to zero, a mutation happens in one of the cells. Only those mutations that lead to the cancer, the so-called driver muta-
tions, are considered.89,90 All types of the tissue cells can divide, but with different rates. The normal stem cells divide with a
rate b, while the mutated cells divide with a rate rb. The parameter r is known as a fitness parameter, and it specifies how the
mutated cells differ from normal cells due to various physiological and biochemical changes. The situation when r > 1
describes the advantageous mutations (mutated cells divide faster than the normal cells), r = 1 corresponds to neutral muta-
tions (the same division rates for mutated and normal cells), and for r < 1 the mutations are disadvantageous (mutated cells
divide slower than the normal cells). It is believed that mutations that lead to the tumor formation are mostly advantageous.8

The appearance of few mutated cells in the tissue is not yet the sign of cancer. The organism operates normally, and
it is in the so-called homeostatic equilibrium. The homeostasis has multiple features, but for this model it is important
that in the healthy tissue the number of cells remains constant. Thus, if some cells divide then other cells must be

FIGURE 7 The relations between the relaxation times (τN) and the ligand potency (EC50). The kinetic parameters kon and koff and the

ligand potency EC50 to evaluate τN are taken from ref [79] (for the top plot), and from Ref. [58] (for the bottom plot). In calculations, N = 6

and kp = 0.1 s�1 were utilized. The figures are reproduced with permission from Ref. [76]
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removed to keep the total number cells in the tissue constant. The exact details of how it is happening are not known,
but to imitate this dynamics it is assumed that the system follows a procedure known as a Moran process.8,91,92

According to this approach, one of the N cells is randomly chosen for the division, and this increases the total number
of cells in the tissue by one. But then immediately another randomly chosen cell from N + 1 cells is removed, returning
the number of cells in the tissue to the original count: see Figure 8. In addition, it is assumed that in the system only a
single mutation might happen due to very low rates of mutations.8,89 This means that the increase in the number of
mutated cells in the tissue is taking place only due to random divisions of the mutated cells and random removals of
the normal cells.

The state of the tissue at any moment can be characterized by a single parameter, the number of mutated cells
n (1 ≤ n ≤ N).81 This is because the total number of cells is fixed in the homeostasis. All changes in the system can be
viewed as stochastic transitions between discrete states as visualized in Figure 8. In the sequence of states with different
numbers of mutated cells (see Figure 8), there are only two possible outcomes. Due to random transitions, the mutation
can be completely removed from the system, and this corresponds to 1! 0 transition. But the other outcome is that the
mutated cells fully occupy the tissue, that is, the system will reach the state n = N (Figure 8). This is known as a muta-
tion fixation, and the model assumes that this event marks the beginning of cancer.8,81,84 After that, no normal cells are
left in the tissue, and the system can break from the homeostasis.

Using the Moran processes rules,8 the transition rates between the individual states of the system can be explicitly
evaluated,81

an ¼ b
n N�nð Þ
Nþ1

: ð28Þ

More specifically, the transition from the state n to n + 1, which increases the number of mutated cells by one, is
taking place with the rate ran. At the same time, the transition n!n�1, which decreases the number of mutated cells,
is taking place with the rate an.

In this model, it is postulated that the tumor appears as soon as the system reaches the state n = N for the first time,
starting at t = 0 in the state n = 1. This suggests that it is convenient to apply first-passage methods for this problem
that were already utilized in some of the discussed above discrete-state stochastic kinetic models. For this purpose, one
can define a first-passage probability density function Fn(t) that corresponds to the probability of reaching the state
N (fixation) for the first time at time t if at t = 0 the system started in the state n. The temporal evolution of these func-
tions can be analyzed from a set of backward master equations,55,56

dFn tð Þ
dt

¼ ranFnþ1 tð ÞþanFn�1 tð Þ�an 1þ rð ÞFn tð Þ, ð29Þ

for 1 < n < N; and for n = 1 we have

FIGURE 8 Top: A schematic view of a single mutation fixation process in the tissue compartment. Normal stem cells are green, while

mutated cells are yellow. Bottom: Corresponding discrete-state stochastic model. The figure is reproduced with permission from Ref. [81]
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dF1 tð Þ
dt

¼ ra1F2 tð Þ�a1 1þ rð ÞF1 tð Þ: ð30Þ

In addition, the boundary condition FN(t) = δ(t) must be satisfied. The physical meaning of this condition is that the
fixation process is immediately accomplished if the system starts from the state N.

While a full dynamic description can be obtained from the knowledge of the first-passage probability functions, to
characterize these processes one could concentrate only on two important parameters. One of them is a fixation proba-

bility, πn �
R∞
0 Fn tð Þdt, and another one is a fixation time, Tn �

R ∞

0
tFn tð ÞdtR ∞

0
Fn tð Þdt . The first parameter gives the overall probabil-

ity to initiate the cancer, while the second parameter measures the average times before this might happen. Analytical
calculations provide explicit expressions for both of these important characteristics.36 For the fixation probability, it has
been shown that,8

πn ¼ 1�1=rn

1�1=rN
: ð31Þ

For r = 1 (neutral mutations), the result simplifies into πn = n/N, which means that the cancer initiation is more
probable with the larger number of mutated cells in the initial state of the system. More importantly is to consider a
start at the state n = 1, when the first mutation appears, and the fixation probability π1 is presented in Figure 9a. As
expected, increasing the fitness parameter r enhances the probability of tumor formation. This is clearly due to the fact
that for r > 1 the mutated cells divide faster. Another observation is that for realistically large values of N the fixation
probability is independent of the size of the tissue.

More interesting observations are found by analyzing the fixation times that are the mean times between the
appearance of the first mutation and the state when all cells in the tissue are mutated. Analytical calculations yield,81

T1 ¼Nþ1
b

XN�1

n¼1

1
n N�nð Þ

rn�1
r�1

	 

rN�n�1
rN �1

	 

: ð32Þ

For neutral mutations in the tissues with large number of cells (r = 1 and N!∞), the expression simplifies into

T1 ’N=b: ð33Þ

More generally, for large N the equation for the mean fixation times can be rewritten as

T1 ¼ 1
b

1

r 1� 1
rN

� � Ei �lnrð Þ
lnr

1�1
r

	 

þ 2
lnr

γþ ln N lnr½ �ð Þ
� �

, ð34Þ

where Ei(x) is the exponential integral defined as Ei xð Þ��R∞�x
e�z

z dz, and γ is the Euler-Mascheroni constant.
Calculated average times before the cancer initiation are presented in Figure 9b that shows some surprising observa-

tions. While increasing the fitness parameter r should accelerate the appearance of the tumors, and this is supported by
the results in Figure 9b, the slowest cancer initiation dynamics is found for neutral mutations r = 1. This situation is
similar to the dynamics of bacterial clearance that we already considered before. For r = 1 the system behaves similarly
to the unbiased random walk along the lattice of sites in Figure 8 that leads to the slow dynamics. The unexpected
result is that even for r < 1 the tumor formation might be fast, which contradicts to naive expectations: in this case the
normal cells divide faster than the mutated cells. One could explain this by noticing the definition of the mean fixation
time. It is a conditional time to achieve the state n = N given that the system can reach it. For disadvantageous muta-
tions (r < 1), the fixation probability is low since the system dynamics is biased in the direction of eliminating the muta-
tions (to the left in Figure 8). But those rare successful fixation events must happen fast because at every intermediate
step the system can reverse the direction due to the bias against the fixation. Interestingly, these results support some of
the controversial theoretical arguments that only neutral mutations are possible in biological systems since the evolu-
tion might already explored the faster advantageous and disadvantageous mutations.8
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This discrete-state stochastic model for cancer initiation has been applied to analyze the data from 28 types of can-
cer.81 Explicit estimates of the average times before the formation of different types of tumors have been obtained. But
the most important result from this theoretical approach is the analysis of correlations between the cancer lifetime risks
and mean cancer initiation times. The cancer lifetime risk, which is defined as the probability to get cancer or to die
from cancer during the human lifetime, is widely used in forecasting the chances of getting the cancers. It implicitly
assumes that the more probable cancers (higher lifetime risks) will happen faster. The discrete-state stochastic model is
capable to estimate the initiation times from real data. Surprisingly, the analysis shows that there is no correlation
between the cancer lifetime risks and mean times to get the tumor. One can see this from Figure 10. Statistical analysis

FIGURE 9 Heat maps for (a) fixation probability π1 and (b) fixation time τ1 (normalized with respect to the normal stem cell replication

time, i.e., b = 1) as a function parameters r and N. the figures are reproduced with permission from Ref. [81]
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of this graph gives a Spearman's correlation coefficient �0.2 between the cancer lifetime risks and the fixation times,
magnitude of which is significantly smaller than the value �1 expected for the perfect correlation. Another statistical
test, the P-value analysis, also indicates the lack of correlations between two dynamic properties of cancer initiation.

While the lack of correlations between the cancer lifetime risks and cancer initiation times is clearly unexpected,
one should notice that similar situations have been encountered in other complex systems. More specifically, this is fre-
quently observed in chemical reactions. While the probability for reaction to happen is determined by the free energy
difference between the products and reagents, the actual time for reaction to occur is given by the height of the activa-
tion energy barrier.1 These two energy scales are not always correlating in chemical processes. The fact that similar
events are taking place in the cancer initiation dynamics possibly suggests a similar microscopic mechanism with an
effective barrier in the mutation fixation process. It could be that not the fixation parameter r specifies how fast the
tumor will form but the barrier for the dynamic transitions on the pathway to the mutation fixation.

6 | CONCLUSION

We presented several stochastic kinetic models and their applications for studies of various complex biological pro-
cesses. While each of the model was specifically tailored for the given problem, there are some common features that
allow us to understand the success of this theoretical approach. In all systems, the underlying complex processes were
mapped into the network of stochastic transitions between specific discrete states. This procedure lead to explicit ana-
lytical description of dynamic processes that also clarified many aspects of the molecular mechanisms. The advantage
of this theoretical method is that it can be extended by taking into account larger and more complex networks of states
that might better reflect the properties of the systems. Theoretical predictions are also easy to apply for the analysis of
available experimental data and for predicting new observations. Another advantage is that one can utilize the analo-
gies with already well-studied systems to draw conclusions and propose mechanisms for these biological processes. It
seems that the stochastic kinetic method, together with more microscopic biochemical approaches and with experimen-
tal support, might be a powerful tool in uncovering the mysteries of natural phenomena.
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