
Model of the hydrophobic interaction

A. B. Kolomeisky¤ and B. Widom

Department of Chemistry, Baker L aboratory, Cornell University, Ithaca, NY 14853, USA

Received 30th November 1998

The potential of mean force between interstitial solute molecules in Ben-NaimÏs
one-dimensional, many-state lattice model (related to the one-dimensional q-state Potts
model) is calculated. Since the model is exactly soluble, all results are explicit and analytic.
It is found that the magnitude of the e†ective attractive force between solutes and the
range of that attraction vary inversely with each other : the strength of the attraction, as
expected, increases with increasing magnitude of the (entropically unfavorable) free energy
of ““hydrogen-bondÏÏ formation, but at the same time the range decreases. Conversely,
when the unfavourable entropy and favourable energy of ““hydrogen-bondÏÏ formation are
nearly in balance, the attraction between hydrophobes, while then weak, is of very long
range. It is remarked that solubility in a one-dimensional solution model, when the direct
intermolecular interactions are of short range, can only be deÐned osmotically. The
solubility of the hydrophobe, as so deÐned, is calculated with the present model. It is
found to decrease with increasing temperature, as expected for a hydrophobic solute.

1 Introduction
The hydrophobic e†ect (thinking of water as the solvent) is a manifestation of an unfavorable free
energy of solvation. The volume of solvent that is unfavorably a†ected by the forced accommoda-
tion of two hydrophobic solute molecules is less when the latter are close together than when they
are widely separated, thus leading to an e†ective, solvent-mediated attraction between them. This
is superimposed on, and often dominates, the direct interaction between the solute molecules. In
water, the unfavorable solvation free energy arises from an unfavorable entropy change associated
with the reorganization of the solvent structure (the formation or strengthening of hydrogen
bonds). This unfavourable entropy change outweighs the accompanying energy change, which by
itself would favor that structural rearrangement.

Ben-Naim1 has described a one-dimensional, many-state lattice model (related to the ““q-state
Potts model ÏÏ2 in one-dimension), which we now adapt to illustrate and illuminate the hydropho-
bic e†ect. The model is suited to this purpose because it incorporates the basic mechanism
described above, even though its picture of ““water ÏÏ is highly unrealistic. There are very many
interesting and important studies of the hydrophobic e†ect that are based on much more realistic
pictures of water.3h16 The advantages of the present model are that it is analytically soluble, and
that its extreme simplicity allows some aspects of the hydrophobic e†ect that might otherwise be
obscured by detail to be exhibited clearly.

¤ Present address : Institute for Physical Science and Technology, University of Maryland, College Park,
MD 20742, USA.
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In the following section we deÐne the model and outline the calculation of the solvent-mediated
contribution to the potential of mean force between solute molecules. In Section 3 we calculate,
via the modelÏs transfer matrix, the elements called for in Section 2 and thus obtain explicit formu-
las for the mean force. Section 4 provides numerical illustrations of the results. In Section 5 we
deÐne and calculate the soluteÏs solubility in the model solvent.

2 Model and the potential of mean force
The model one-dimensional solvent is shown in Fig. 1. Each molecule occupies one lattice site and
may be in any of q states (orientations). The horizontal orientation is identiÐed as state number 1.
A hydrophobic solute molecule (shown as the shaded circle in the Ðgure) can only be accommo-
dated at an interstitial site between two solvent molecules that are both in state 1. Thus, the
presence of such a solute forces its two neighboring solvent molecules to be both in state 1. A pair
of neighboring solvent molecules with both members of the pair in state 1 corresponds to a
““hydrogen-bond.ÏÏ Only neighboring solvent molecules interact with each other, and they interact
also with any interstitial solute that may reside between them.

Let (i, j\ 1, . . . , q) be the energy of interaction between a pair of neighboring solventw
ijmolecules when one is in state i and the other in state j, and take

w
ij
\
Gw,

u,

when i \ j \ 1

otherwise
(1)

with

u [ w (2)

The positive di†erence u [ w may be identiÐed as the (magnitude of ) the favorable energy of
““hydrogen-bondÏÏ formation, while the positive quantity k ln(q [ 1), where k is BoltzmannÏs con-
stant, is the (magnitude of) the unfavorable entropy. They are the energy and entropy associated
with restricting a solvent molecule to be in state 1, given that a speciÐed one of its neighbors is
also in state 1.

Let v be the energy of interaction of an interstitial solute molecule with its solvent neighbors.
The model is then deÐned by three parameters, u [ w, v, and q. It will transpire that the solvent-
mediated part of the potential of mean force between solutes depends only on the Ðrst and third of
these (thus, only on the properties of the pure solvent, as already remarked by Pratt and
Chandler5), while the solubility of the solute depends on all three.

In this model the picture of ““water ÏÏ is highly oversimpliÐed, and in this simplest version of the
model there is no provision for distinguishing solutes of di†erent sizes. Much of the detail incorp-
orated in more realistic models3h16 is therefore absent, although the essential features of the
hydrophobic interaction are still present.

The calculation of the potential of mean force will be based on the potential-distribution
theorem.17 Let /(r), with r measured in units of the lattice spacing, be the direct interaction
potential between two solute molecules a distance r apart and let g(r) be the soluteÈsolute pair-
distribution function. Also, let be the probability that the solvent molecules at a given pair ofP11consecutive sites be both in state 1 irrespective of the states of the molecules at the other sites, and
let P(r), likewise, be the probability that the molecules at two such pairs of consecutive sites
m, m] 1 and n, n ] 1 with n [ m\ r P 1 be all in state 1. Then in the dilute-solution limit, where

Fig. 1 The model one-dimensional solvent, with each molecule centered at a lattice site and in one of q states
(orientations). The horizontal orientation is identiÐed as state 1. A solute molecule (the shaded circle in the
Ðgure) can only be accommodated at interstitial sites between two solvent molecules that are both in state 1.
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the solute ““ test particle ÏÏ and ““ test-particle ÏÏ pair17 encounter only solvent but not other solutes,

g(r)eÕ(r)@kT\
P(r)e~2v@kT

(P11 e~v@kT)2
\

P(r)
P112

(r P 1) (3)

at the temperature T . We note the cancellation of the parameter v in this expression.
The total potential of mean force between pairs of solute molecules is [kT ln g(r), of which the

solvent-mediated part, W (r), is [kT ln g(r) [ /(r) ; thus,

W (r) \ [kT ln[g(r)eÕ(r)@kT]

\ [kT ln[P(r)/P112 ] (4)

from eqn. (3). That this is independent of the parameter v and so depends only on the properties of
the pure solvent is as anticipated. Explicit expressions for and P(r), which are the two ingre-P11dients in the formula for W (r), are obtained in the following.

3 Transfer matrix and calculation of W(r)
The quantities and P(r) required in eqn. (4) for the evaluation of W (r) may be obtained fromP11the eigenvalues and eigenvectors of the transfer matrix V of the model solvent. Let

a \ e~u@kT, b \ e~w@kT (5)

with u and w the interaction energies in eqn. (1). Then V is the q ] q matrix in which the 1,1
element is b and all the other elements are a :

b a a É É É a
a a a É É É a

V \aa a a É É É ab (6)

< < < <
a a a É É É a

qCq
It is convenient, only because it allows a slightly simpler notation in what follows, to take the

linear chain of Fig. 1 to form a closed circle of N sites, so that sites 1 and N are neighbors. This
has no e†ect on properties calculated in the thermodynamic limit N ] O [the limit taken at Ðxed
r in the case of P(r)]. Then by standard transfer-matrix methods18 one Ðnds that the quantity P11deÐned in Section 2 as the probability that the molecules at a pair of consecutive sites be both in
state 1, is

P11\
1

Z
V11(VN~1)11 (7)

where Z is the partition function of the model solvent,

Z\ trace VN (8)

and where in eqn. (7) the notation and means the 1,1 element of the matrices V andV11 (VN~1)11VN~1, respectively. Likewise, P(r), the probability that the molecules at two such pairs of sites m,
m] 1 and n, n ] 1, with n [ m\ r, be all in state 1, is

P(r)\
1

Z
(V11)2(Vr~1)11(VN~r~1)11 (r P 1) (9)

Note the distinction between and when p [ 1. The relation in eqn. (9) holds, as indi-(V
ij
)p (Vp)

ijcated, even down to r \ 1, where the sites m] 1 and n are the same site.
V as deÐned in eqn. (6) has two positive eigenvalues,1 j(1)[ j(2)[ 0, the remaining q [ 2 eigen-

values being all 0. Let be the ith component (i \ 1, . . . , q) of the eigenvector that belongs tot
i
(l)

the eigenvalue j(l) (l\ 1, . . . , q). Then from the structure of V in eqn. (6) it follows, since j(1) and
j(2) are non-zero, that all the except have a common value, as do all the exceptt

i
(1) t1(1) t

i
(2) t1(2) ;
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i.e.,

t2(1)\ t3(1)\ É É É \ t
q
(1) ; t2(2)\t3(2)\ É É É \ t

q
(2) (10)

Then the eigenvalues j(1) and j(2) of V and their associated eigenvectors satisfy1

bt1(l)] (q [ 1)at2(l)\ j(l)t1(l)
at1(l)] (q [ 1)at2(l)\ j(l)t2(l)

H
(l\ 1, 2) (11)

From eqn. (11), j(1) and j(2) are, respectively, the larger and smaller of the two roots j (both
positive) of1

K b [ j
a

(q [ 1)a
(q [ 1)a [ j

K
\ 0 (12)

Take the eigenvectors to be normalized by so that, from eqn. (10),&
i/1q t

i
(l)2 \ 1,

t1(l)
2 ] (q [ 1)t2(l)

2 \ 1 (l\ 1, 2) (13)

Then the distinct components and of the normalized eigenvectors follow fromt1(1), t2(1) t1(2), t2(2)eqns. (11)È(13).
The elements of any power Vp of V may be expressed in terms of the eigenvalues j(l) and

normalized eigenvectors w(l) (l\ 1, . . . , q) by

(Vp)
ij
\ ;

l/1

q j(l)pt
i
(l)t

j
(l) (14)

But we noted that j(1)[ j(2)[ 0 and all other j(l)\ 0. It then follows from this and from eqns.
(6)È(9), upon taking the thermodynamic limit N ] O [at Ðxed r in the case of P(r)], that

P11\
b

j(1)
t1(1)

2 (15)

and

P(r P 1)\ P112
C
1 ]

At1(2)
t1(1)
B2Aj(2)

j(1)
Br~1D

(16)

The formula in eqn. (15) for will be required in Section 5 in the calculation of the solubility ofP11the solute in the model solvent. Meanwhile, from eqns. (4) and (16), we obtain for the solvent-
mediated part, W (r), of the potential of mean force between two solute molecules separated by
r (P1) lattice spacings, in the dilute-solution limit,

W (r)\ [kT ln
C
1 ]

At1(2)
t1(1)
B2Aj(2)

j(1)
Br~1D

(17)

One sees from eqn. (17) that W (r) vanishes proportionally to exp([r/m) at large r, with an
exponential decay length m, which we may identify as the range of the solvent-mediated force
between solutes, given by

m \
1

ln
j(1)
j(2)

(18)

This is the same formula as that for the correlation length in the Ising model when j(1) and j(2) are
the largest and next largest eigenvalues of its transfer matrix.18 Approach to the critical point in
the Ising model is characterized by a closing of the gap between j(1) and j(2) and a consequent
divergence of m. In the present model, it will transpire, there is an analogous phenomenon: when
the favorable energy and unfavorable entropy of ““hydrogen-bondÏÏ formation are nearly in
balance, j(1) and j(2) are nearly equal and the potential of mean force is then long ranged
(although weak).
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The explicit calculation of W (r) from eqn. (17) requires the ratios and j(2)/j(1). DeÐne(t1(2)/t1(1))2new quantities c, x, S, and Q in terms of a, b, and q [ 1 by

c\
b
a

\ e(u~w)@kT[ 1 (19)

x \
q [ 1

c
(20)

S \
S

1 [
4x

(1 ] x)2
A
1 [

1

c
B (21)

Q\
sign (x [ 1)

S
1 ]

4x
(x [ 1)2c

(22)

where sign (x [ 1) means ]1 if x [ 1 and [1 if x \ 1. That c[ 1 is a consequence of the earlier
assumption in (2). Then S and Q are manifestly real, with 0\ S \ 1 and [1 \ Q\ 1. Then from
eqns. (11)È(13) we Ðnd for the required ratios,

At1(2)
t1(1)
B2

\
1 ] Q
1 [ Q

,
j(2)
j(1)

\
1 [ S
1 ] S

(23)

Then from eqns. (17) and (23), with the deÐnitions in eqns. (19)È(22), we obtain W (r) as an explicit
function of r and of the modelÏs two parameters u [ w and q, at any temperature T :

W (r)\ [kT ln
C
1 ]

1 ] Q
1 [ Q

A1 [ S
1 ] S

Br~1D
(24)

It was remarked in Section 2 that u [ w may be identiÐed as the (magnitude of) the favorable
energy of ““hydrogen-bondÏÏ formation and k ln(q [ 1) the (magnitude of) the unfavorable entropy.
Then the corresponding free energy of ““hydrogen-bondÏÏ formation, *F (unfavorable when it is
positive), is [(u [ w)] kT ln(q [ 1) ; or, from the deÐnition of x in eqn. (20),

*F\ kT ln x (25)

We may then anticipate that for this to be a model of the hydrophobic interaction we shall need x
to be greater than 1. In the numerical illustration in Section 4, which follows, it will be seen that
realistic values of x are in the range 2È20.

At the same time it will be seen in Section 4 that the favorable energy and unfavorable entropy
are not far from being in balance ; i.e., that the positive *F is typically much smaller than either of
the positive quantities u [ w or kT ln(q [ 1) separately ; and that, as a consequence, c as deÐned in
eqn. (19) is typically thousands of times as great as x. Thus, as a practical matter, from the
deÐnitions of S and Q in eqns. (21) and (22) the quantities (1] Q)/(1 [ Q) and (1[ S)/(1 ] S)
required in eqn. (24) may be taken to be

1 ] Q
1 [ Q

B g
(x [ 1)2

x
c,

0,

x [ 1

x \ 1
(26)

1 [ S
1 ] S

B g
1

x
,

x,

x [ 1

x \ 1
(27)

It was remarked earlier that 0 \ S \ 1 (whatever x and c), so we have 0\ (1 [ S)/(1 ] S) \ 1.
Therefore, from eqns. (24) and (26), the solvent-mediated attraction between solutes is practically
nil when x \ 1. This conÐrms that x [ 1 [or *F[ 0, from eqn. (25)] is necessary for an attractive
hydrophobic interaction, as anticipated.
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When x does exceed 1, so that there is a non-negligible solvent-mediated hydrophobic attrac-
tion, we see from eqns. (18), (23), (25), and (27) that its range is

m B
1

ln x
\

kT
*F

(28)

The closer the otherwise positive *F is to 0 the weaker is the attraction, but then also the longer
ranged is it, according to eqn. (28). Thus, the strength and range of the attraction are inversely
related. This will be very clear in the plots displayed in Section 4. Should this prove to be a
general feature of the hydrophobic e†ect, not limited to the present model, it could have important
implications in the interpretation of the hydrophobic e†ect in real systems.

When the energy and entropy of hydrogen-bond formation are nearly in balance, *F is near 0
and x is near 1. That, from eqns. (23) and (27), makes the eigenvalues j(1) and j(2) nearly degener-
ate. This is the analogy with approach to a critical point that was mentioned earlier. Strictly,
however, as noted above, (1[ S)/(1 ] S) \ 1, so, unlike at a true critical point, we cannot here
have an exact degeneracy.

4 Numerical illustration
For a realistic representation of hydrogen-bond energy one should think of the model parameter
u [ w as being around 25 kJ mol~1. For purposes of illustrating the workings of the present
model we shall then take (u [ w)/k \ 3000 K. There is no generally agreed on value of the free
energy of hydrogen-bond formation, except that at 300 K it is much less than 25 kJ mol~1 ; i.e.,
the favorable energy and unfavorable entropy are largely mutually compensating at that tem-
perature. For purposes of illustration we shall take *F to be about 4 kJ mol~1 at 300 K, which,
by eqn. (25), is equivalent to taking x to be around 5 at that temperature. Then from eqns. (19)
and (20), with (u [ w)/k \ 3000 K, we conclude that q [ 1 is around 110 000 and that x varies
from 2 to 20 as the temperature varies from 275 to 348 K. Over this temperature range, then, the
quantity c deÐned in eqn. (19) is enormously greater than x, as anticipated in Section 3.

That q should be many thousands has as a precedent what Andersen and Wheeler Ðnd in an
analogous lattice model of closed-loop coexistence curves.19 They have the parameters uB 5000
and u* B (nu)1@2 sin h with h the tetrahedral angle, arccos([1/3), and they identify the number of
orientations of each molecule as In the notation of the present model that would““H2OÏÏ 12uu*.
imply q B 300 000. Both in that model and in the present one it is probably because the picture of
““water ÏÏ is unrealistic that so large a value of q is required.20

Fig. 2 shows W (r)/k as a function of r, as calculated from eqn. (24) with eqns. (19)È(22), at the
three temperatures T \ 275 K, 300 K and 348 K, with the parameter values (u [ w)/k \ 3000 K
and q [ 1 \ 110 000. Using the approximations in eqns. (26) and (27) instead of the exact eqns.

Fig. 2 W (r)/k (in K), with (u [ w)/k \ 3000 K and q [ 1 \ 110 000. The curves marked x \ 2, 5, and 20
correspond to the temperatures T \ 275 K, 300 K, and 348 K, respectively.
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Fig. 3 [(1/k) dW (r)/dr (in K), with the same values of the parameters and at the same temperatures as in Fig.
2.

(21) and (22) makes no discernible di†erence. The analytic function of r in eqn. (24) was used to
plot smooth curves, for ease of visualization, although for this lattice model only integer values of
r (as integer multiples of the lattice spacing) are deÐned. The plots are made only for r P 1 ; we
choose not to deÐne W (r) at r \ 0, for any such deÐnition would be arbitrary and unphysical.

The solvent-mediated force (in units of the Boltzmann constant and of the reciprocal of the
lattice constant), [(1/k) dW (r)/dr, is plotted in Fig. 3, with the same values of the parameters and
for the same three temperatures as in Fig. 2. One sees in both Figs. 2 and 3 that the strength of the
solvent-mediated hydrophobic attraction increases with increasing temperature while the range of
the attraction decreases. The strength increases because the free energy *F, which is
[(u [ w)] kT ln(q [ 1), becomes increasingly positive, hence increasingly unfavorable to
““hydrogen-bondÏÏ formation, as T increases ; while the range decreases with increasing T because
then, by eqn. (28),

m B [[(u [ w)/kT ] ln(q [ 1)]~1 (29)

The inverse relation between strength and range anticipated in Section 3 is apparent in the Ðgures.

5 Solubility
DeÐning or measuring solubility requires the coexistence of two phases, one a reference phase and
the other the solution in which the solubility of the solute is to be determined. The two phases are
in equilibrium; the solute is present in the two at equal chemical potential (activity). The reference
phase may be pure liquid or solid solute ; it may be pure gaseous solute, in which case one is
deÐning the solubility of a gas ; or it may be another liquid or solid solution, in which case one is
deÐning the solubility by the partition coefficient of the solute between the two phases. The case in
which the reference phase is pure gaseous solute is a special case of the latter, where the ““ solvent ÏÏ
in the reference phase is vacuum.

Because normal phase coexistence is not possible in one-dimensional systems with short-range
forces, the solubility of the hydrophobic solute in the model solvent can here only be deÐned
osmotically. We imagine a semi-permeable membrane, permeable only to the solute. (Note that
this is opposite to the usual picture of osmosis, where the membrane is permeable only to solvent,
not to solute.) In the present one-dimensional model the ““membraneÏÏ is a point, separating the
saturated solution of interest on one side from the reference phase on the other.

For deÐniteness, and for purposes of illustration, we shall take the reference phase to be pure
gaseous solute, dilute enough to be an ideal gas. We are thus determining the solubility of a
gaseous hydrophobe in the model solvent. Let and be the number densities of the soluteogas osolnin the reference phase and in the solution, respectively, at osmotic equilibrium. We than take as
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Fig. 4 Solubility, R] 105, as a function of temperature (in K), with (u [ w)/k \ 3000 K, q [ 1 \ 110 000, and
v\ 0.

our deÐnition of the solubility, R, the dimensionless ratio

R\ osoln/ogas (30)

With the reference gas phase taken to be ideal, and with the solubility in the solvent assumed to
be low enough so that the saturated solution is also very dilute, this R is the Ostwald absorption
coefficient. It is also proportional to the HenryÏs-law coefficient (or its reciprocal, depending on
how one writes HenryÏs law).

With the activity z of a species deÐned so as to become asymptotically equal to the number
density in the limit of an inÐnitely dilute gas, the denominator in the deÐnition of R in eqn.ogas(30) is also the common value of the activity z of the solute in the two phases. Then R is the ratio
of the number density to the activity in the model solution. By the potential-distribution
theorem,17 that ratio in the present model is precisely the exp([v/kT ) that occurs squared inP11the denominator of the Ðrst equality for g(r) exp[/(r)/kT ] in eqn. (3) ; thus, from eqn. (15),

R\
b

j(1)
t1(1)

2 e~v@kT (31)

Unlike the potential of mean force, the solubility R depends on the modelÏs third parameter, v,
which is the energy of interaction of an accommodated solute molecule with its two neighboring
solvent molecules. It is equivalently the energy of transfer of a solute molecule from the reference
gas phase to an already available interstitial site in the model solvent. The energy of transfer
without the stipulation ““already available, ÏÏ when q [ 1 is very large so that very few sites are
indeed available, is v[ (u [ w).

We may obtain the coefficient of the exponential in eqn. (31) from eqns. (11)È(13) withbt1(1)
2/j(1)

l\ 1, with the result that

R\
(1/c)e~v@kT

[(x [ 1)(1[ 1/c) ] 12(x [ 1 ] 2/c)[x ] 1 ] (x [ 1)/Q]
(32)

with c, x, and Q as given by eqns. (19), (20), and (22). With x [ 1 and c thousands of times as great,
just as before, we have QB 1 from eqn. (22) and

RB
e~v@kT

(x [ 1)2c
(33)

The pre-factor [(x [ 1)2c]~1 of the exponential in eqn. (33) is the approximation to theP11,probability that the solvent molecules at a pair of consecutive sites be both in state 1. With
u [ w[ 0, this probability must decrease with increasing temperature, and that this is so for
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[(x [ 1)2c]~1 may be veriÐed from the deÐnitions of c and x in eqns. (19) and (20). The additional
energy parameter v may be positive or negative. In Fig. 4 there is plotted the solubility R as a
function of temperature, from eqn. (33), for v\ 0 and for the same values of the other parameters,
q [ 1 and u [ w, as in Figs. 2 and 3. The temperature range in Fig. 4 is 275 to 348 K; these are
the lowest (x \ 2) and highest (x \ 20) of the temperatures to which the three curves in Figs. 2 and
3 correspond. As expected, R falls with increasing T . This is one of the signatures of the hydropho-
bic e†ect in real systems. The solubility is seen to be very low with these values of the parameters :
of the order of 10~6 or 10~5 over the temperature range of the Ðgure.

For v\ 0 the solubility is greater than that in Fig. 4 by the factor exp([v/kT ), but it then
decreases more rapidly with increasing T . When v[ 0 the solubility is less by that exponential
factor, but it then decreases less rapidly with increasing T , and may even go through a minimum
and then increase. This happens when v[ u [ w ; i.e., when the energy of transfer of a solute
molecule from the reference gas phase into the solvent (with q [ 1 very large) is positive. Such a
minimum in the solubility of a hydrophobic solute in water as a function of temperature is often
observed in experiment and in simulation ;6 but in the present model the solubility R at such a
minimum could only be at most of order 1/(q [ 1)2, which is unrealistically low. Thus, it may be
that the mechanism by which the minimum occurs here is di†erent from that by which it occurs in
real systems. This question remains open.
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