
Role of Static and Dynamic Obstacles in the Protein Search for
Targets on DNA
Alexey Shvets, Maria Kochugaeva, and Anatoly B. Kolomeisky*

Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States

ABSTRACT: Protein search for specific sequences on DNA marks the
beginning of major biological processes. Experiments indicate that
proteins find and recognize their targets quickly and efficiently. Because
of the large number of experimental and theoretical investigations, there
is a reasonable understanding of the protein search processes in purified
in vitro systems. However, the situation is much more complex in live
cells where multiple biochemical and biophysical processes can interfere
with the protein search dynamics. In this study, we develop a theoretical
method that explores the effect of crowding on DNA chains during the
protein search. More specifically, the role of static and dynamic obstacles
is investigated. The method employs a discrete-state stochastic
framework that accounts for most relevant physical and chemical
processes in the system. Our approach also provides an analytical
description for all dynamic properties. It is found that the presence of the
obstacles can significantly modify the protein search dynamics. This effect depends on the size of the obstacles, on the spatial
positions of the target and the obstacles, on the nature of the search regime, and on the dynamic nature of the obstacles. It is
argued that the crowding on DNA can accelerate or slow down the protein search dynamics depending on these factors. A
comparison with existing experimental and theoretical results is presented. Theoretical results are discussed using simple
physical-chemical arguments, and they are also tested with extensive Monte Carlo computer simulations.

■ INTRODUCTION
Proteins and DNA are two main classes of biological molecules
from which all living matter is made. Interactions between them
control all major cellular processes involved in transfer and
maintenance of genetic information, such as transcription and
post-transcription modifications, translation, DNA repair, and
many others.1−3 The starting point of these processes is a
protein finding and recognizing specific target sequences on
DNA that triggers the following biochemical processes. The
protein search has been extensively studied using a variety of
experimental and theoretical techniques.4−34 Although a
significant progress in clarifying search mechanisms has been
achieved, many aspects of this complex biological process still
remain not well understood.30,31

Experimental studies of the search process suggest that in
many cases proteins associate with their targets on DNA much
faster than expected from classical theories of chemical
reactions.5,7,10,30,31 Such surprising behavior is called a
facilitated dif fusion, and it stimulated multiple discussions on
the molecular origin of this phenomenon.30,31 Many exper-
imental studies have been performed in purified in vitro systems
to resolve the mechanisms of the protein search. It is now
widely accepted that the facilitation is achieved because
proteins search by combining motion through a bulk solution
(3D mode) with hoping along the DNA chain (1D mode), and
there is a fast change between these modes.20 The nonspecific
interactions and fast intersegment transfer rates of the protein
molecule between different segments of DNA lead to effectively

larger mobility for the protein molecule, accelerating the search
process.20,34 Although these arguments probably explain
reasonably well the in vitro experimental observations, it is
not clear if they can be successfully applied for in vivo systems.
The main reason for this is that in live cells there are many
other processes taking place in parallel, and this might influence
the search dynamics.30 For example, due to macromolecular
crowding some parts of the DNA chain are heavily covered by
other proteins, preventing the sliding to the target sequence.
These covering proteins serve as obstacles or roadblocks in the
search for specific sites on DNA. In addition, the searching
protein can be trapped by associating to other biological
macromolecules in the bulk solution.
Although the presence of obstacles on DNA in live cells

seems to be an important factor for the protein search
dynamics, most of theoretical investigations ignore this effect
and there are only few works that addressed this
issue.8,9,24,28,30,35 However, the predictions from these theoreti-
cal studies are rather controversial. It was argued using an
approximate theory and computer simulations that the
presence of immovable obstacles always leads to larger search
times.8,24,28,30 At the same time, other computational studies
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indicated that there are conditions when the obstacle can lead
to the faster search for specific targets.9,35 But the molecular
nature of these observations and the origin of these
discrepancies have not been explained. In addition, only static
obstacles have been considered so far, with the exception of the
computational study of Marcovitz and Levy.9 A more realistic
situation in the cells is when these roadblocks can dissociate
from DNA, and this might strongly affect the search.
In this paper, we develop a comprehensive theoretical

approach that analyzes the effect of obstacles in the protein
search dynamics. Using a discrete-state stochastic framework
that accounts for most important chemical and physical
processes, a fully analytical dynamic description of the protein
search in the presence of static obstacles is obtained for all
ranges of parameters. The analysis is extended to dynamic
obstacles, which cannot slide along the DNA chain but they can
reversibly dissociate from it. Here the approximate theoretical
arguments along with extensive Monte Carlo computer
simulations are utilized for describing the protein search
process. By providing a microscopic picture for these complex
phenomena, our analysis explains the previous controversial
results by clarifying under what conditions the obstacles can
facilitate or slow down the search dynamics. A comparison with
available experimental observations and theoretical models is
also given.

■ THEORETICAL METHODS
We consider a simple stochastic model, presented in Figure 1,
where a single protein molecule is searching for a specific target

site on a single DNA chain that consists of L binding sites. The
target is at the site m (1 ≤ m ≤ L). This chain also contains one
roadblock, which occupies Δ sites on DNA with the left
boundary at the site lob (Figure 1). This obstacle prevents the
protein from sliding to the target if the protein is bound to
DNA anywhere between the sites lob + Δ and L (Figure 1). Our
theoretical method can be extended to the case of multiple
obstacles at different locations, but for simplicity we consider
only a single roadblock. In addition, it is assumed for now that
the obstacle is static; i.e., it can never dissociate from the DNA
chain. Later, we will lift this restriction when the mobile
obstacles will be considered.
The protein always starts the search process from the

solution that we label as a state 0. It is also assumed that the

DNA chain is coiled in the solution, and the searching protein
diffuses very fast in the volume around DNA. Then the protein
can reach all parts of DNA with equal probability. The protein
molecule can bind to any vacant site on DNA with a rate kon
per each site (Figure 1). The DNA-bound protein can diffuse
along the chain with a diffusion rate u with equal probability in
both directions if the motion is not blocked by the obstacle.
Finally, the protein molecule can dissociate from DNA with a
rate koff, as shown in Figure 1. It has been argued before that
the protein search for the specific sites can be associated with
first-passage processes.19,20,36 Then we can introduce a function
Fn(t), which is defined as a probability to reach the target for
the first time, if at t = 0 the protein was at the state n (where n
= 1, 2, ..., L are sites on DNA and n = 0 corresponds to the bulk
solution). The temporal evolution of these probabilities can be
described utilizing the backward master equations,19,20
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different,
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where b = L corresponds to the last site on DNA, whereas b =
lob − 1 is the last vacant site before the obstacle. In addition, for
the bulk solution (n = 0) we have
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At the same time, there are additional constraints in the system.
If the protein molecule starts at t = 0 at the target site m, the
search process is immediately finished. This condition can be
written as

δ= =F t t( 0) ( )m (5)

To obtain a full dynamic description of the first-passage
events in this system, it is convenient to apply Laplace
transformations, i.e., F̃n(s) = ∫ 0

∞e−stFn(t) dt.
20 Then the set of

backward master equations can be transformed into simpler
algebraic expressions,

+ + ̃ = ̃ + ̃ + ̃+ −s u k F s u F s F s k F s( 2 ) ( ) [ ( ) ( )] ( )n n noff 1 1 off 0
(6)

for 2 ≤ n ≤ L − 1, excluding the obstacle sites and the target.
Meanwhile, for the boundary sites we have

+ + ̃ = ̃ + ̃+s u k F s uF s k F s( ) ( ) ( ) ( )a aoff 1 off 0 (7)

for a = 1 or lob + Δ, and

+ + ̃ = ̃ + ̃−s u k F s uF s k F s( ) ( ) ( ) ( )b boff 1 off 0 (8)

for b = lob−1 or L. For the bulk solution it can be written as

Figure 1. General scheme for the protein target search on DNA with
an obstacle. There are (L − 1 − Δ) nonspecific sites and 1 specific site
on the DNA. The target is at the site m, and the obstacle is occupying
sites between lob and lob + Δ − 1. A protein molecule can slide along
the DNA chain with the rate u or might dissociate into the solution
with the rate koff. The bulk solution is labeled as a state 0. From the
solution the protein can associate to any site on DNA with equal
probability and the total rate kon. The obstacle can dissociate from
DNA with the rate wout and it can return to bind to the same position
with the rate win.
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whereas the boundary condition leads to

̃ =F s( ) 1m (10)

The solutions of these equations can be found by assuming a
general form of the solution as ̃ = +F s Ay B( )n
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A mean first-passage time to reach the target starting from the
solution we identify as the average search time. Then it is given
by
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The explicit expression for the search time T0
(ob) in the presence

of the static obstacle can be written as

=
+ − Δ −

T
k k L S
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on off (15)

In the case of no obstacles on the DNA chain (Δ = 0), this
result reduces to the average protein search time for the target
on unobstructed DNA as was obtained earlier.20 All other
dynamic properties for the system can be easily obtained from
explicit expressions for the first-passage probabilities.20,33,36

Unfortunately, this exactly solvable discrete-state stochastic
method cannot be easily extended to the protein search with
dynamic obstacles that can bind and unbind from DNA many
times. However, in the next section we present approximate
theoretical arguments, supported by Monte Carlo computer
simulations, that allow us to obtain a good understanding of the
search dynamics in this case.

■ RESULTS AND DISCUSSION
Static Obstacle. The first question we would like to address

is how the position and the size of the obstacle influence the
protein search dynamics. The average search times for the static
obstacle, as well as for the case without roadblocks, are
presented in Figure 2. One can see that three different search
regimes can be identified depending on the range of
parameters, and this qualitative behavior is independent of
the presence of obstacles. This mostly reflects the fact that
there are three major length scales in the system: the target
length, which we assume to be equal to one, the average
distance λ that the protein slides along the DNA chain in each
encounter, and the total DNA length available for the search
and not covered by the obstacle, which is equal to (L − Δ).20

The first regime corresponds to the case when the sliding
length is less than the target size (λ < 1). In this case, the
protein can only bind/unbind to the available sites on DNA,
but no sliding can take place. Because the sliding length can be
defined as λ ≃ u k/ off ,

20 this corresponds to the situation of
very slow diffusion on DNA or very fast dissociations.
Obviously, the position of the target and obstacle, and the
size of the roadblock are not important in this regime because
each site on DNA can be reached independently only through
3D search via the bulk solution (Figures 1 and 2). This dynamic
phase is called a jumping regime.20

In the second regime, for 1 ≤ λ ≤ (L − Δ), the protein in
addition to 3D associations/dissociations can also slide along
the DNA chain on the way to the target. We can label this
dynamic phase as a sliding regime.20 It can be viewed as a
combined 1D + 3D search process, and the proteins can come
to the target from the solution (3D mode) or from DNA (1D
mode). As a result, the overall search time is smaller than for
the jumping phase because of the increased flux of the protein
molecules to the target due to motion along DNA. However,
the presence of the obstacles and their sizes become important
for the search in this phase. To find the target, the protein must,

Figure 2. Average search times to find the target located at m = L/10
as a function of the scanning length λ = u k/ off The transition rates
utilized for calculations are u = 105 s−1 and kon = 0.1 s−1 per one DNA
site. (a) The length of the DNA chain is L = 104 for solid curves and L
= 2000 for the dashed curve. The obstacle starts its position from lob =
L/5, and its size, Δ, is varied as shown on the picture. (b) The length
of the DNA chain is L = 104, and the size of the obstacle is Δ = 1000.
The position of the obstacle is varied as shown in the picture.
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on average, scan the whole DNA length, not covered by the
obstacles, (L − Δ) sites. Increasing the size of the roadblock
reduces the available number of sites on DNA that must be
checked, and this accelerates the search (Figure 2a). However,
the exact location of the obstacle with respect to the target
influences the search dynamics, as shown in Figure 2b.
More interesting behavior is observed in the third search

regime for λ > (L − Δ), which is called a random-walk dynamic
phase.20 Qualitatively different behavior is observed with and
without the roadblocks on DNA. When there is no obstacle on
DNA, the protein molecule in this regime binds to DNA and it
never unbinds until the target is found. The protein is
performing a 1D random-walk motion in this case. For this
reason, the search time is independent of the scanning length λ,
or, to be more precise, independent of the dissociation rate koff
because we keep the diffusion rate u constant for calculations in
Figure 2. Only the total free length of DNA, L, is important
here. Introducing the obstacle in the system dramatically
changes the search dynamics. Increasing the sliding length λ
(lowering the dissociation rate koff) slows down the overall
search time. But this effect also depends on the position and on
the size of the obstacle (Figure 2).
By analyzing the results in Figure 2, we can also clearly

determine what conditions accelerate or slow down the protein
search after introducing the obstacle on DNA. Three different
dynamic behaviors can be identified. In the jumping regime (λ
< 1) the presence of the roadblocks effectively has no effect on
the search dynamics because of purely 3D search mechanism.
For this set of parameters (koff ≫ kon) the rate-limiting step is
just to go to the target site, and the search time is T0

(ob) ≃ 1/kon
[eq 15]. In the sliding regime, [1 < λ < (L − Δ) ], finding the
roadblocks on DNA lowers the search times for the fixed
distance between the target and the roadblock because the
protein molecule should scan smaller DNA segments during
the 1D searching mode as compared to the case without
obstacles (Figure 2a). However, decreasing the distance
between the target and the obstacle makes the search slower
(Figure 2b). It also widens the sliding search regime. This
happens due to the decrease of the 1D protein flux from the
DNA side where the roadblock is positioned. Putting the
obstacle next to the target completely shuts off this channel.
But the dynamics changes dramatically in the random-walk

regime, [λ > (L − Δ)], where a significant fraction of the
searching trajectories can be blocked by the obstacles. This
happens due to strong nonspecific interactions between the
protein and DNA that keep the protein molecule bound to the
DNA chain for long periods of time. Thus, our theoretical
analysis provides a microscopic explanation of the controversy
on the role of static obstacles in the protein search. This effect
is determined by the specific sets of parameters that favor the
specific dynamic behavior. The obstacles might make the search
faster or slower, or they might even lead to no changes at all.
Although we have a fully analytical description for the

protein search on DNA with obstacles, to understand better the
molecular picture of these processes, it is also convenient to
consider a different approach. The search time is a mean over
all possible trajectories starting from the solution. In the
random-walk regime (λ > L − Δ) the largest contribution to
the search time will come from trajectories that lead the protein
molecule to the area on DNA between the obstacle and the
DNA end (Figure 1). The protein cannot reach the target from
these sites via sliding, and it has to redundantly visit them many
times until it can dissociate back into the solution. We can

define a probability q of coming to the blocked segment of
DNA, and it can be found from the geometric arguments
(Figure 1),

=
− − Δ +

− Δ
q

L l
L

1ob
(16)

The probability to return again to the same blocked segment
for the second time is equal q2 and, similarly, to visit the same
segment after n − 1 search cycles is qn. The average time to be
on DNA during one search cycle is 1/koff. Then the
contribution from visiting the blocked segment dominates the
overall search time, and it can be found as
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As for other search regimes, when λ < L, the contribution of
sliding is minimal. Here we can view the search for the target
on DNA of length L with the roadblock of size Δ as the search
on the DNA chain of the length L − Δ but without obstacles,
for which exact results are already known,20
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where T0
(0) is the search time for the system without roadblocks,

and an auxiliary function S0
(0) is given by
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with y(s) from eq 13. Therefore, the total search time in all
dynamic regimes can be approximated as

≃ −Δ +T L T L t( ) ( )0
ob

0
(0)

ob (20)

The comparison between exact calculations and the new
method is presented in Figure 3. One can clearly see that our
approximation works perfectly everywhere with only tiny
deviations in the sliding regime for small-size roadblocks. But,

Figure 3. Comparison between exact (solid curves) and approximate
solutions (dashed curves) for the search times to find the target as a
function of the scanning length λ = u k/ off . The length of the DNA
chain is L = 104, and the target is placed at m = L/10. The obstacle
starts its position from lob = L/5, and its size Δ is varied as shown on
the picture. The transition rates utilized for calculations are u = 105 s−1

and kon = 0.1 s−1.
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most importantly, it allows us to understand more clearly the
protein search processes on DNA with obstacles. This method
suggests that in the jumping and sliding regimes [for λ < (L −
Δ) ] the search on DNA of length L with the obstacle of size Δ
can be effectively viewed as a search on pure DNA of length L
− Δ without any roadblocks. For the random-walk regime [λ >
(L − Δ) ] the search times are dominated by multiple visits to
the blocked DNA segments, i.e., to the segment between the
roadblock and the DNA end from which the protein cannot
directly slide to the target. The stronger the interaction
between the protein and DNA, which effectively means very
small dissociation rates koff, the longer the search times.
Dynamic Obstacle. In the next step, we investigate a more

realistic situation with dynamic obstacles in the protein search
for specific targets. Now we assume that the obstacle can bind
to DNA with a rate win and dissociate with a rate wout (Figure
1). As before, the roadblock can be found in one specific
location on DNA, starting from the site lob, and it is not
covering the target site m. For simplicity, we consider here the
obstacle of size Δ = 1, although our results can be easily
extended to dynamic roadblocks of any size. It is important to
note here that in this analysis we neglect the possibility for the
obstacles to slide along DNA. As we mentioned above, it is
difficult to obtain exact analytical solutions for the correspond-
ing discrete-state model. Instead, we utilize Monte Carlo
computer simulations and approximate theoretical arguments
to analyze the search dynamics in this case.
We start with the jumping search regime where λ < 1. In this

phase, the protein finds the target only via binding and
unbinding events through the solution, and there is no sliding
along the DNA chain. This means that the presence of the
obstacle as well as its mobility do not influence the search
process at all (Figure 4). Similar dynamics is also observed in
the sliding regime, for 1 < λ < L − Δ. In this phase, the search
mechanism can be viewed as a combination of 3D and 1D
motions. Because the obstacle is so small in size in comparison
with the total DNA length (Δ ≪ L), it does not lead to a

significant decrease in the search time for smaller number of the
DNA free sites, L − Δ ∼ L. And because of the frequent
dissociations, the protein molecule loses memory on where the
obstacle is sitting. However, the dynamic nature of the
roadblock can modify the range of this search regime. One
can see from Figure 4 that varying the rates wout and win can
shrink or widen this dynamic phase. For example, decreasing
the dissociation rate of the obstacle, wout, increases the range of
the sliding search regime.
The most interesting dynamics is observed in the random-

walk regime where λ > L. When there is no roadblock, the
search is taking place only via 1D sliding along the DNA, and
the search time is independent of the sliding length (Figure 4).
If the obstacle is always present on DNA, as we discussed
above, the search time is dominated by trajectories where the
protein is in the blocked segment (between the roadblock and
the DNA end) without a direct access to the target and with
rare dissociations into the solution. Here, the search time
increases with the scanning length λ because it corresponds to
longer times in the blocked segment. The protein search with
the dynamic obstacle shows a behavior that is intermediate
between these two limiting cases (Figure 4). The longer the
obstacle sits on DNA, which is given by the time tout = 1/wout,
the longer the search time. However, the dynamics is
independent of the scanning length λ, similarly to the case of
the search on homogeneous DNA without obstacles.
To explain this dynamic behavior, we can use the following

arguments. It is clear that the protein molecule performs a
normal search when the obstacle is dissociated from DNA.
Then the overall search time can be written as

λ λ> = > +T L T L T( ) ( )0
(dyn)

0
(0)

1 (21)

where T0
(0) is the search time on DNA without obstacles and T1

is a contribution due to the obstacle blocking the search.
During each time tin = 1/win, on average, the obstacle is not on
DNA and the protein molecule scans a characteristic distance
λ ≃ = u wut /w in in . When the roadblock binds back to
DNA and sits there for the time tout, the normal search cannot
take place if the protein is in the blocked segment. Thus, the
biggest contribution to T1 is due to the trajectories that go
through the blocked segmentthey are the slowest. But
eventually the protein will manage to leave the blocked
segment, and the average distance it moves is AL, where a
coefficient A < 1 reflects the mean distance to escape from the
blocked segment and the fraction of proteins that will come to
the blocked segment. Then the normal search will proceed as
before. This suggests that it will take AL/λw obstacle binding/
unbinding cycles to move out of the blocked segment, and the
contribution due to obstacles can be written as

λ
≃ =T

w
AL

w
AL1 1

u
w

1
out w out

in (22)

Here 1/wout is the time that the roadblock is on DNA and the
overall search is delayed. This delay is taking place until the
protein moves out of the blocked segment. The predictions
from this approximate theory in comparison with the computer
simulations results are plotted in Figures 4 and 5 for suitably
chosen parameters A ≃ 0.1. Very good agreement suggests that
our approximate theory correctly captures main features of the
search dynamics in this regime.

Figure 4. Dynamic phase diagram for the protein search on DNA with
the dynamic obstacle. The DNA chain has the length L = 103 bp with
target at the position m = L/2, and the obstacle is at lob = 3L/4.
Parameters used for calculations are kon = 0.1 s−1, u = 105 s−1, win = 106

s−1, and different wout (in units of s−1) as shown in the picture.
Symbols correspond to Monte Carlo simulations whereas the dashed
lines describe the approximate theory (see the text for the
explanations). Solid curves correspond to exact results for DNA
without obstacles and for DNA with one static obstacle.
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It is important to note that the presented theoretical
arguments are reasonable if the protein can scan more than
one site during the time when the roadblock is not on DNA, or
this mechanism will not work. This implies that our theory is
valid only for λw > 1. Otherwise, the search mechanism with
static obstacles as described above will be realized. These
predictions are confirmed as shown in Figure 5. When the
characteristic length is not small, λw > 1, our approximate
theory describes the search dynamics quite well, whereas for λw
< 1 the search time goes to a plateau and a different dynamic
behavior is observed (Figure 5).
Comparison with Existing Theories and Experiments.

The effect of the static obstacles has been experimentally
investigated recently for the facilitated diffusion of lac repressor
proteins in the living cells.24 By placing a roadblock protein
particle next to the target, we found that the association rate to
the specific sequence was reduced by a factor 1.75 ± 0.18.24

Using our exact results from eq 15 and the parameters u = 7 ×
105 s−1, kon = 6.4 × 104 s−1 (per total DNA molecule), λ ≃ 25
bp, and Δ ≃ 1 bp, which are consistent with experimental
observations,24,33 we estimate that the presence of the obstacle
should slow down the search in 1.80 times. This perfectly
agrees with the experimental results.
Hammar et al.24 have also proposed a continuum theoretical

approach to account for the effect of the static obstacles in the
protein search. More specifically, they found that the ratio of
the association rates in the presence and absence of the single
obstacle at the distance l from the target is given by24

λ λ λ
λ λ λ λ

= = + + +
+ + + +

r
T

T
l

l
( 1) [1 (1 tanh( / ))]

(1 2 )[ 1 (1 tanh( / ))]
0

0
(ob)

2

2

(23)

A comparison of predictions from our discrete-state stochastic
model and the continuum theory of Hammar et al.24 are
presented in Figure 6. One can see that small scanning length λ
< 1 both theoretical approaches agree, and the ratio of
association rates is equal to 1. This corresponds to the jumping
regime where the search is taking place for only 3D associations
and dissociations. Because the obstacle is small for this system,
Δ ≪ L, its presence does not modify the search times. Similar
agreement is found for intermediate values of λ where the

search is taking place in the sliding regime. Here the presence
of the obstacle slows down the search by blocking the flux to
the target from one side of DNA. However, for very large values
of the scanning length the results from both theories start to
deviate. For λ → ∞ the continuum model predicts r = 1/2,
whereas our theory suggests that r → 0. The result from the
continuum theory seems to be unrealistic because increasing
the scanning length corresponds to larger nonspecific
interactions with DNA. This means that the protein molecule
will spend more time in the blocked segment, and this should
strongly decrease the association rate to the target. Our
theoretical results are fully consistent with these physical
arguments. But one should also note that the continuum theory
was developed under the assumption of the infinite DNA
length.

■ SUMMARY AND CONCLUSIONS
We developed a theoretical approach to analyze the role of
roadblocks in the protein search for specific binding sites on
DNA. Two different scenarios were considered. First, the
protein search in the presence of immovable obstacles was fully
analyzed using exactly solvable discrete-state stochastic model.
We observed three different dynamic search phases, which are
determined by the balance between the target size, the scanning
length, the DNA length, and the size of the roadblock. The
effect of the static obstacles was different in these search
regimes. In the jumping regime where the search is taking place
only via 3D binding/unbinding events, effectively the obstacle
does not modify the search dynamics. In the sliding regime,
where the search is a combination of 3D and 1D modes, the
search is faster in the presence of obstacles because of the
smaller length of free DNA segments for the fixed distance
between the target and the obstacle. But varying this distance
might also increase the search times by making harder for
proteins to slide to the target from the DNA side with the
obstacle. However, the roadblock significantly decelerates the
protein search in the random-walk regime where mostly 1D
sliding is observed. Here the obstacle effectively blocks the
approach to the target, and it takes the protein molecule many
attempts to escape from the blocked segment on DNA. This
analysis provides a full explanation of previous controversial
theoretical results. It is argued that the previous different

Figure 5. Average times to reach the target as a function of the
characteristic length λ = u w/w in . Parameters used for calculations
are m = L/2, lob = 3L/4, kon = 0.1 s−1, u = 105 s−1, the DNA chain
length L = 104 bp, koff = 10−3 s−1, and variable rates wout (in units of
s−1) as indicated in the plot. Symbols correspond to Monte Carlo
computer simulations, and the solid curves are theoretical predictions.

Figure 6. Ratio of association rates to the target in the presence and in
the absence of the obstacle. The parameters used for calculations in
the discrete-state stochastic model are m = L/2, lob = L/2 + 1, u = 7 ×
105 s−1, kon = 6.4 × 104 s−1 (per total DNA molecule), and Δ ≃ 1 bp.
Our theoretical predictions are shown by solid curves. Equation 23 is
employed for continuum results, which are shown by dashed lines.
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theoretical predictions correspond to different dynamic search
regimes. We also discussed a new theoretical method that
allowed us to clarify the molecular picture of the search in
different dynamic phases.
Next, we developed a theoretical model for analyzing the

protein search in the presence of dynamic obstacles, which
supposed to be a better description of real processes in living
cells. Again, three search regimes with different dynamics were
identified. It was argued that the search is faster in the systems
with mobile roadblocks in comparison with the static obstacles.
But this effect can be observed only in the random-walk regime,
where the scanning length is larger than the length of free
DNA. By developing an approximate theoretical picture, we
also found that in this regime the search dynamics is different
for the systems with dynamic obstacles in comparison with the
systems with the static roadblocks. The main idea of our
approach is that the search is taking place when the obstacle is
not on DNA. Extensive Monte Carlo computer simulations
fully support our theoretical predictions.
In addition, our approach was compared with available

experimental results. It is found that our model with the static
roadblock next to the target site exactly agrees with
experimental observations that show lowering the correspond-
ing association rate. We also compared our discrete-state
stochastic model with predictions from the existing continuum
theory. The differences between two approaches are discussed
using physical-chemical arguments. It is found that our theory is
fully consistent with the fundamental views of the protein
search phenomena, whereas the continuum approach becomes
unphysical in the limit of large scanning lengths.
Although the presented theoretical method seems to be

capturing the most relevant features of the protein search in the
living cells, one should note that our approach is still rather
oversimplified. Many important phenomena during the
protein−DNA interactions are not taken into account. They
include the moving of obstacles on DNA, covering the target
sequence, the intermittent interactions between the searching
proteins and crowding agents in the solution, different protein
and DNA conformations, the DNA chain mobility, and many
others. It will be critically important to test the validity of the
presented method in more advanced theoretical approaches, as
well as in the experimental studies.
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