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ABSTRACT: Successful biological development via spatial and temporal
regulations of cell differentiation relies on the action of multiple signaling
molecules that are known as morphogens. It is now well established that
biological signaling molecules create nonuniform concentration profiles,
called morphogen gradients, that activate different genes, leading to
patterning in the developing organisms. The current view of the formation
of morphogen gradients is that it is a result of complex reaction−diffusion
processes that include production, diffusion, and degradation of signaling
molecules. Recent studies also suggest that the degradation of morphogens
is a critically important step in the whole process. We develop a theoretical
model that allows us to investigate the role of a spatially varying
degradation in the formation of morphogen gradients. Our analysis shows that the spatial inhomogeneities in degradation might
strongly influence the dynamics of formation of signaling profiles. Physical−chemical mechanisms of the underlying processes are
discussed.

■ INTRODUCTION

The development of various living organisms from initially very
small group of identical embryo cells is one of the most
fascinating and complex processes in biology.1−4 A critical stage
in biological development is a pattern formation during which
the eventual fates of cells become determined at different times
and different positions. Several classes of signaling molecules,
known as morphogens, play the central role in tissue patterning
and organ formation.1−4 The term morphogen was first
introduced by A. Turing in his seminal paper on mathematical
modeling of biological pattern formation.5 It is now widely
accepted that the concentration gradient of morphogens
provides cells with required positional information to activate
or inhibit specific genes, probably utilizing the local
concentration thresholds or other related mechanisms.1−4,6−8

In recent years, there has been a substantial progress in
experimental and theoretical studies of the mechanisms of
embryonic development stimulated by the various morphogen
gradients;6,7,9,24 however, many features of the biological
development processes still remain not well understood.7,8

Several mechanisms have been proposed for explaining how
the morphogen gradients are established.7−10 The simplest and
widely popular approach for the description of the signaling
profiles formation is called a synthesis−diffusion−degradation
(SDD) model.7 According to this model, morphogens are
synthesized at specific locations, and from the source region
they diffuse through a field of embryo cells where they
eventually are degraded after binding to cell receptors.7 The
balance between the synthesis, diffusion and degradation
processes leads to the formation of concentration profiles of
signaling molecules. Recent investigations also point out the

importance of the degradation steps in the establishment of
morphogen gradients.11,12,19,20 Without a constant removal of
the morphogen molecules, nonuniform concentration profiles
cannot be achieved, and thus the proper biological signals
cannot be transferred downstream to genetic networks. It was
argued that the degradation functions as an effective potential
that drives the signaling molecules away from the local source
production.11,20 So far, most theoretical studies of the
formation of morphogen gradients assumed that the degrada-
tion rates are constant and uniform, that is, independent of the
spatial positions in the embryo;7,11,12,19,20 however, this
assumption probably is not very realistic because the density
of the cell receptors might vary along the field of embryo
cells.29 Such spatial inhomogeneities might alter the morph-
ogen fluxes absorbed by the cell receptors, but the effect of the
spatial variations in degradation on the mechanisms of the
formation of signaling profiles is not known.
We extend the existing theoretical methods to investigate the

role of spatially varying degradation rates on dynamics of
morphogen gradients formation. To illustrate our approach, we
investigate in detail two examples of the discrete-state SDD
model with spatially varying degradation rates for which full
analytical solutions can be obtained. Our analysis shows that
spatial inhomogeneity in degradation rates has dramatic effects
on concentration profiles and on dynamics of their formation.
These observations are explained using our original idea of
degradation functioning as an effective potential.20

Received: January 21, 2016
Revised: February 25, 2016
Published: February 29, 2016

Article

pubs.acs.org/JPCB

© 2016 American Chemical Society 2745 DOI: 10.1021/acs.jpcb.6b00695
J. Phys. Chem. B 2016, 120, 2745−2750

D
ow

nl
oa

de
d 

vi
a 

R
IC

E
 U

N
IV

 o
n 

O
ct

ob
er

 1
7,

 2
02

2 
at

 1
8:

46
:3

1 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

pubs.acs.org/JPCB
http://dx.doi.org/10.1021/acs.jpcb.6b00695


■ THEORY
Let us start the analysis by considering a general discrete-state
stochastic SDD model in one dimension with position-
dependent degradation rates, as shown in Figure 1. A system

consisting of L + 1 embryo cells distributed sequentially along
1-D interval will be investigated. We assume that signaling
molecules are produced with a rate Q only at the site n = 0.
From any site n ≥ 0, they can diffuse in both directions with a
diffusion rate u. The particles might be degraded at any site 0 ≤
n ≤ L inside the finite interval with a corresponding rate kn. In
general, the values of these degradation rates are position-
dependent. One can define a function Pn(t) as a probability to
find the morphogen molecule at the site n at time t. The
temporal evolution of this probability function is governed by
the following master equations

= + − +
P t

t
Q uP t u k P t

d ( )
d

( ) ( ) ( )0
1 0 0 (1)

for n = 0

= + − +− +
P t

t
u P t P t u k P t

d ( )
d

[ ( ) ( )] (2 ) ( )n
n n n n1 1 (2)
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= − +−
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d ( )
d

( ) ( ) ( )L
L L L1 (3)

for n = L. For the case of constant and uniform degradation
rates, kn = k, this discrete-state SDD model with a linear
degradation can be solved exactly.11 In a more general scenario,
the degradation rates on different spatial positions are not the
same. It is difficult to obtain full analytical solutions for arbitrary
spatial variations in the degradation rates; however, it is
possible to solve the corresponding master equations for several
simple cases. In the following sections, we will analyze such two
examples. First, we study a discrete-state stochastic SDD model
with a local inhomogeneity; that is, the degradation rate at only
one site is different from other sites. In the second case, we
consider a more complicated model in which a signaling
domain is composed of two regions with different degradation
rates. These inhomogeneous degradation models allow us to
clarify many aspects of the mechanisms of the establishment of
the signaling profiles.
It is important to note that we do not assume that the total

number of particles in our system is fixed. Because of the open
boundary conditions, this number can fluctuate. Thus, the
probabilities that we compute can be understood only as mean
concentrations.30

One of the main functions of the morphogen gradients is to
transfer biological information to embryo cells. It is still a

debate on how it happens at the molecular level and if the
transfer of information is taking place in the stationary state or
before reaching the steady-state conditions.8 Let us assume for
simplicity that the signaling profiles should reach the stationary
state for transferring the information; however, our analysis can
also be generalized for pre-steady-state coding possibilities.
Then, the important characteristics of the dynamics of
morphogen gradients formation are times needed to achieve
the steady-state concentration levels at specific spatial locations.
These times are known as local accumulation times (LATs),
and a theoretical framework for computing these quantities has
been recently developed.12 It can be done by utilizing local
relaxation functions, which are defined as

= −
= −

= −R n t
P n t P n

P n t P n
P n t
P n

( , )
( , ) ( )

( , 0) ( )
1

( , )

( )

s

s s

( )

( ) ( )
(4)

The physical meaning of these functions is that they represent
the relative distance to the stationary state: At t = 0 the distance
is one, while at steady state it is equal to zero. The explicit
formulas for the LAT can be derived then via Laplace
transformations of the local relaxation function, R̃(n,s) =
∫ 0
∞R(n,t) e−st dt12

∫= − ∂
∂

= ̃ =
∞

−t n t
R n t

t
t R n s( )

( , )
e d ( , 0)st

0 (5)

This approach can be used to calculate essentially all dynamic
properties of the morphogen gradients.

■ RESULTS AND DISCUSSION
Finite Interval with a Local Inhomogeneity. We first

consider the simplest situation with a local inhomogeneity in
the degradation rates. In this case, the particles might be
degraded at any site n ≠ m inside the finite interval 0 ≤ n ≤ L
with the rate k. While the degradation rate at the special site m
is different, k′ ≠ k. We define again Pn(t) as the probability to
find the signaling molecule at the site, n, at time, t. This
probability function is controlled by the following master
equations
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for n = L.

At large times, we have = 0P t
t

d ( )
d
n , and these equations can be

solved analytically. One can find the solution by using the
following guess

=
+ ≤ ≤
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Figure 1. Schematic view of the discrete-state SDD model for the
establishment of morphogen gradients on 1-D lattice of cells.
Degradation rates, kn, are position-dependent for each lattice site, n.
Morphogens are produced at the origin, n = 0, with the rate, Q. They
diffuse along the interval of length, L, with the rate, u.
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with = + − +x u k k uk u(2 4 )/22 , and four unknown
coefficients, A1, A2, B1, and B2, should be determined from
the boundary conditions (n = 0, n = m, and n = L). Because
there are four coefficients, we need four equations to find them.
The corresponding master equation for n = m + 1 yields one
more necessary equation

= + − ++
+ +

P t
t

u P t P t u k P t
d ( )

d
[ ( ) ( )] (2 ) ( )m

m m m
1

2 1 (11)

Now, using eqs 6, 8, 9, and 11, we can explicitly estimate the
coefficients A1, B1, A2, and B2.
The final expressions for the stationary density profiles have

the following forms
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for 0 ≤ n ≤ m and
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for m ≤ n. The auxiliary function, η, and the parameters, f, g, b,
and c, are given below
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The resulting morphogen profiles are plotted in Figure 2 for

the inhomogeneity in the middle of the interval, =m L
2
, and for

various diffusion and degradation rates. From the eqs 4 and 5
the explicit expressions for the LATs can be calculated. They
provide important information on the dynamics of establishing
the morphogen gradients. Because the corresponding formulas
for LATs are very bulky, we present them in the Supporting
Information. LAT for the formation of morphogen gradients

with =m L
2
for various diffusion and degradation rates are

presented in Figure 3. One can see that when the degradation
rate at the special site is much smaller than at the other sites (k′
≪ k), the effect of the inhomogeneity is local and relatively
small, but the strong inhomogeneity (k′ ≫ k) has a more long-
range effect by dividing the interval into two parts with different
dynamics and concentration profiles. This agrees well with the

idea that degradation behaves like an effective potential.11,20

The small degradation rate modifies the system weakly, while
the large degradation rate has a more global effect on the
system.

Finite Interval with Two Different Degradation
Regions. A more interesting behavior is observed in the
system of two coupled degradation regimes. Here we consider a
finite interval of length, L, composed of two degradation
regions of length m and L − m. Signaling molecules might be
degraded at any site n inside the finite interval 0 ≤ n ≤ m with
the rate k1. While the degradation rate for any site m < n ≤ L is
equal to k2. Employing again Pn(t) as the probability to find the
morphogen at site n at t, the temporal evolution of the system
can be described as

= + − +
P t

t
Q uP t u k P t

d ( )
d

( ) ( ) ( )0
1 1 0 (15)

for n = 0

Figure 2. Stationary-state density profiles as a function of the distance
from the source for the system with a local inhomogeneity in the
degradation rates. Solid curves correspond to k = 1 and k′ = 0.01.
Dashed curves correspond to k = 0.01 and k′ = 1. (a) u = 0.01, (b) u =

1, and (c) u = 100. For calculations =m L
2
was utilized.

Figure 3. Local accumulation times as a function of the distance from
the source for the system with a local inhomogeneity in the
degradation rates. Solid curves correspond to k = 1 and k′ = 0.01.
Dashed curves correspond to k = 0.01 and k′ = 1. (a) u = 0.01, (b) u =

1, and (c) u = 100. For calculations =m L
2
was utilized.
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= + − +− +
P t

t
u P t P t u k P t

d ( )
d

[ ( ) ( )] (2 ) ( )n
n n n1 1 1 (16)

for 0 ≤ n ≤ m;

= + − +− +
P t

t
u P t P t u k P t

d ( )
d

[ ( ) ( )] (2 ) ( )n
n n n1 1 2 (17)

for m < n < L and

= − +−
P t

t
uP t u k P t

d ( )
d

( ) ( ) ( )L
L L1 2 (18)

for n = L. In the stationary-state regime, we have = 0P t
t

d ( )
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n , and

these equations can be solved analytically. The solution again
can be written as
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2 . To determine the un-
known coefficients, A1, A2, B1, and B2, we again need four
equations. Two of them are given by master equations for n = 0
and n = L. The additional two expressions are master equations
for n = m and n = m + 1
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After some algebra, we finally obtain the following
expressions for the stationary profiles
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where the auxiliary functions A and B are specified as
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with constants b1, b2, c1, c2, d1, d2, e1, and e2 given by
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The results of our calculations for density profiles for the
system with two degradation regions are presented in Figure 4.

One can see that for slow diffusion (Figure 4a) there is not
much difference in the behavior independently of the order of
degradation regions. The degradation is so strong that most
morphogens are removed close to the origin; however, the
difference becomes more pronounced with increasing the
diffusion rate u. For the system with a strong degradation in the
first region (k1 ≫ k2) there is strong decay in the concentration
profile, which is followed by essentially a constant density
profile; see Figure 4c. This observation is easy to explain: There
is a strong tendency to remove morphogens in the first region,
and in the second one the dynamics is closer to a free diffusion.
But for the system with the strong degradation in the second
region (k1 ≪ k2) there is a relatively weak linear decay in the
region 0 ≤ n ≤ m and the fast exponential decay in the second
region, m ≤ n ≤ L. The second region with strong decay serves
as a sink for signaling molecules in the first part, yielding the
expected in this case linear profile.
More information about the dynamics of formation of

morphogen gradients with spatially varying degradation rates
can be obtained from calculations of LAT. The explicit
expressions are very bulky, and they are given in the Supporting
Information. The results of LAT for systems with two
degradation regions are presented in Figure 5. Different
behavior at two regions is clearly observed, but one can also
see that the system with the strong degradation in the first
region (red curves in Figure 5) always reaches the stationary
profiles faster. The strongest effect is observed for slow
diffusion (Figure 5a), while for faster diffusion rates the
difference is lower; see Figure 5b,c. This is a surprising result. In
our calculations we took m = L/2; that is, two regions have the
same length. The overall amount of degradation is the same in
both systems; the difference is only in the order of degradation
regions. One would naively expect that relaxation dynamics to
the stationary state at the end of the interval (n = L) should be
the same in both systems, but this is not the case at all regimes.
This leads us to an important conclusion that the dynamics of
formation of morphogen gradients can be modified by changing

Figure 4. Stationary state density profile as a function of the distance
from the origin for the system with two degradation regions. Solid
curves correspond to k1 = 1 and k2 = 0.01. Dashed curves correspond
to k1 = 0.01 and k2 = 1. (a) u = 0.01, (b) u = 1, and (c) u = 100. For

calculations =m L
2
was utilized.
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the spatial distribution of degradation rates, even without
changing the amplitudes of the degradation rates.
To explain these surprising observations we can invoke the

idea of effective potential due to degradation that was
previously proposed by us.11,20 Let us consider two neighboring
lattice sites, n and n + 1. Because the morphogens are produced
at the origin before diffusing along the interval, signaling
molecules at the site n + 1 spend more time in the system than
particles on the site n. Then, they have higher probability to be
removed from the system, and the concentration of
morphogens is generally smaller at the site n + 1, creating a
gradient. Such concentration gradient can be also obtained as a
result of the action of the potential in the system, acting in the
direction of increasing n but without degradations.11,20 This
effective potential can be estimated in terms of the stationary
concentrations

≃U k T Pln neff B (26)

We plot such effective potentials in Figure 6. One can see that
the effective potential is always stronger for the system with the
strong degradation in the first region (red curves in Figure 6)
for weak diffusion. Increasing the diffusion rate u creates the
region where the potential from the system with weaker
degradations in the first region becomes stronger (blue curves
in Figure 6), but on average over the whole interval, the effective
potential is stronger for the system with k1 ≫ k2. This nicely
explains the dynamics of the relaxation to the stationary states
as presented in Figure 5. LAT is smaller when the effective
potentials, that drive morphogens along the interval, are
stronger.

■ CONCLUSIONS
We developed a theoretical framework for investigating the role
of spatially varying degradation rates in the formation of
morphogen gradients. Our analysis is based on the discrete-
state stochastic models of the formation of signaling profiles.
The approach provides a full analytical description for the
stationary profiles and LATs. We specifically analyzed two cases
of systems with spatially varying degradations. First, a local
inhomogeneity model, in which the degradation rate on a single

cell differs from all other degradation rates, was considered.
Second, we studied a system with two different regions of
degradation. Our analysis shows that in both cases the
inhomogeneity might lead to strong changes in the dynamic
behavior of the system. The effect is stronger for slow diffusion,
while for the fast diffusion it becomes smaller. We also found a
surprising result that the dynamics of morphogen gradient
formation can be strongly influenced by varying the spatial
distribution of degradation rates without changing the total
amount of degradation. Using the idea of effective potential
created by degradation, all obtained results are fully explained.
Our theoretical method suggests that dynamics of signaling
processes can be well tuned by modifying not only the strength
of the degradation but also a spatial distribution of the
receptors.
Although our approach provides a clear physical picture of

the underlying processes during the development of morph-
ogen gradients, it should be emphasized that the model is
oversimplified and many important features are neglected,
including temporal evolution of degradation rates, coupling of
reaction-diffusion processes in signaling molecules with under-
lying mechanical changes in the embryo cells, and many others.
It will be important to test our predictions in more advanced
theoretical studies as well as directly in experiments.
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