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ABSTRACT: We demonstrate a two-step data analysis method to increase the accuracy of single-
molecule Förster Resonance Energy Transfer (smFRET) experiments. Most current smFRET
studies are at a time resolution on the millisecond level. When the system also contains molecular
dynamics on the millisecond level, simulations show that large errors are present (e.g., > 40%)
because false state assignment becomes significant during data analysis. We introduce and confirm
an additional step after normal smFRET data analysis that is able to reduce the error (e.g., < 10%).
The idea is to use Monte Carlo simulation to search ideal smFRET trajectories and compare them to
the experimental data. Using a mathematical model, we are able to find the matches between these
two sets, and back guess the hidden rate constants in the experimental results.

■ INTRODUCTION

Single-molecule FRET (smFRET) is an experimental method
to measure the dynamic states and rate constants in a molecular
system.1 Its ability to measure rate constants under equilibrium
conditions is essential in many biological systems where
nonequilibrium states are short-lived and difficult to be isolated
from the background, and synchronizing the movement of the
molecules is difficult. In the past decade, smFRET has been
widely applied in research areas, such as protein conformational
change upon thermal or chemical agitations;2−4 folding/
unfolding of DNAs,5−7 RNAs,8,9 and proteins;10−13 and the
interactions between protein−DNA,14,15 protein−RNA,16 and
protein−protein.17 Such studies have fundamentally changed
our understanding of these systems.
This technique is particularly powerful in measuring single-

molecule movement at the millisecond to minute time scale
with recent efforts pushing the detection limit to the
submillisecond level.18 Faster dynamics at the picosecond to
microsecond scales are averaged during the measurement as
part of the signal noise. A scheme of the system and data is
shown in Figure 1. The FRET value of each molecule changes
over time representing the motion of the molecule that has
been stochastically locked in a dynamic “state”, giving a dwell
time of that state followed by a transition to another state.
Many measurements focus on first-order activities, where the
histogram of the length of the dwell times of each state
exponentially decays with increasing of the dwell time.3−6,19

The average dwell time (the lifetime of each state τi) is the
reciprocal of the sum of the rate constants to all other states, τi
= 1/Σj = 1

N kij, where N is the total number of states and kij is the
rate constant from state Si to Sj.

20−22 The lifetimes of
interesting biological motions are often in the microsecond to
second range in many biological systems, the “slow” time scale
(tier-0 dynamics).23 Accurately measuring the dwell time is
critical for smFRET experiments, yet the current available

technology has limited the accuracy of measuring relatively fast
transitions.18,24

Most commonly, in a smFRET experiment, the molecule of
interest is tagged with two fluorescent dye molecules that have
different colors, e.g., green and red, one as a fluorescent energy
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Figure 1. Scheme for simulating a smFRET trajectory. (a) The
transition model used for the simulation. (b) The rate constant matrix
used in the simulation. (c) A smFRET trajectory simulated to
represent the hidden truth (noise-free) at much finer time resolution
(1 ms) than the actual experimental time resolution. (d) Experimental
observation of the same trajectory (at 10 ms time resolution). Data
points were calculated from the integrations of the green and red
signals, not from the averages of the FRET values. The arrows show
the data points that have large possibilities of being falsely assigned in
most software packages. The black arrows indicate the transition edges
and the blue arrows indicate fast transitions, both greatly affect the
assignment of the transitions and the measurement of the dwell times.
Note that experimental noise has not been added to the data, which if
added would make the state identification even more difficult.
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donor and the other as an acceptor. The labeled molecule is
immobilized at an interface and the green dye is excited with a
laser. The energy absorbed by the green dye initiates
fluorescent emission signal of the green dye, or is transferred
to the red dye that emits another signal when the red dye is at
its adjacent vicinity and at an appropriate orientation. The
average physical distance between these two dyes changes with
the transitions of the target molecule among different states
(e.g., folding/unfolding), and so does the ratio of the
fluorescent signals from the donor and from the acceptor:
FRET = Ia/(Ia+Id) where Ia and Id are the intensities of the
acceptor and donor, respectively.2,25 These signals are often
collected by cameras over time with each data point
representing the sum signals over a short period of time, and
are limited by the camera frame rate.24 This time interval is the
smallest unit used to define a “state” of the target molecule. The
accuracy of the state identification depends on the signal-to-
noise ratio of the measurement, and at the same time, the
probability of transitions happening within this period of time.
The discrete data format has been considered to cause

unavoidable errors for smFRET data analysis.26 A false state is
often assigned if one or more transitions have happened in the
smallest time unit and the rate constants analyzed after the state
identification will contain errors. This problem, called the
“camera blurring effect”,27 is severe when these false states have
the same FRET values as the real states (an example is shown
in Figure 1d). When the transition rates are relatively slow
compared to the time resolution of the camera, the current
software packages based on Hidden Markov analysis or change
point analysis extract the real values, to name several major
software, HaMMy,28 vbFRET,27 SMART,29 varBayes-HMM,30

change point analysis,31,32 and STaSI.33 However, when the
transition rates are comparable or faster than the time
resolution of the camera (real rates faster than the limitation
of temporal resolution), significant errors will remain. Several
examples are shown later and in the Supporting Information
(SI). Statistically, for an exponential decay distribution, when
the lifetime τ is the same as the discrete time resolution tR, 1 −
e−tR/τ = 1 − e−1 = 63%; when τ is twice tR, 39%; and when τ is
five times tR, 18% of the dwell times are shorter than the length
of one data point. These dwell times have a large probability to
be inaccurately measured and/or falsely assigned, which affects
the accurate calculation of the average dwell time. In other
words, there is a practical limit on the temporal resolution of
the rate constants that is longer than the experimental time
resolution.
The smFRET field is pursuing faster time resolution to reveal

biological activities and to compare the experimental results
with simulations established from a first-principle under-
standing of atomic and molecular actions.23 Because many
biological molecular motions are at the microsecond region
near or below the current limit of smFRET, increasing the
accuracy of experimental data analysis for systems with fast
dynamics is greatly needed. In this report, we demonstrate a
two-step data analysis method to address this need. In addition
to the regular data analysis, smFRET trajectories with higher
time resolution than the experimental data are simulated and
compared to the experimental results. The best matches are
confirmed to have a better accuracy than the results of one-step
data analysis. The second step is analogous to “fitting”.

■ RESULTS AND DISCUSSION
It is a common way to evaluate a data analysis method using
simulated data whose actual parameters are known.27,30,33 We
first confirm that our Monte Carlo simulation program (see SI)
generates well-behaved simulated experimental data. As a quick
demonstration of the main idea in this report, we have also
adapted a classical thresholding method29,34 to analyze a large
number of Monte Carlo simulated smFRET trajectories (see
SI). Table 1 shows the results of the same Monte Carlo

simulated trajectory analyzed by established methods that are
widely used in experimental analysis and our program. To do
the overall comparison of all rate constants rather than
individually, we use a weighted sum of the absolute difference,
the average percentile difference estimator or weighted L1
norm (wL1), between the rate constants obtained from the
preset true rate constants and those analyzed:
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where ki is the ith rate constant, N is the total number of rate
constants, the subscripts A and T represent the analyzed and
the true values respectively, ki,A represents the ith rate constant
of the analyzed values, and ki,T represents the ith true rate
constant known in the simulated experimental data. A small
difference (of a few percent) between the analyzed rate
constants and the preset values confirms that our simulation
and our analysis are working properly.
An additional step after the regular data analysis, post-FRET

Monte Carlo back simulation (postFRET), is introduced to
correct the camera blurring problem. The number of states is
determined from the experimental data during the first step of
the data analysis using principles such as maximum likelihood
(HaMMY),35 maximum evidence (vbFRET),27 and Student’s t-
test (STaSI).33 When any of the state lifetimes approaches the
experimental time resolution (e.g., two times the time
resolution), ∼40% events are shorter than the time resolution
(Table 2). Under this condition, two kinds of false states caused
by camera blurring are expected, fast transitions and transition
edges (shown by the blue and black arrows respectively in
Figure 1d). For an experimental time resolution that is much

Table 1. Validating Appropriate Data Simulation and
Analysis

set rate HaMMyd vbFRET

1a 2 3 1 2 3 1 2 3

1b 15c 25 14 26 14 26
2 5 30 5 32 5 29
3 10 20 10 21 10 20
wL1AT N/A 3.7%e 2.3%

our codes

1b 15 25
2 5 31
3 10 19
wL1AT 1.3%

aThe initial state of a transition (i). bThe transition state (j). cThe rate
constant (kij) of the transition in s−1. dThe trajectories are shortened
for HaMMy analysis. eThe wL1AT score of the analyzed rate constants
with respect to the true values. Please see the sample trajectory in
different formats in the subfolder “ExampleTrajct” of the software
package in SI.
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faster than (e.g., 1/10 of) the shortest lifetime of the states, the
errors in the rate constant analysis can be corrected by an
existing method.1,27 Under this condition, the major false states
are within those data points that last only one data point
(mainly transition edges shown in Figure 1d by the black
arrows). This type of false state has been well understood and
addressed,1 e.g., the software package vbFRET has incorporated
an option to correct the results using a one-data-point
correction/reassigning method (vbFRET-C, SI, Table S2 ).27

But this method cannot correct the errors when the transitions
are faster than the frame time.
In order to increase the accuracy of experimental data

analysis for the system with fast transitions, the idea reported
here is to simulate smFRET trajectories at finer time resolution
than the experimental conditions (to simulate the hidden
truth), then bin the data (sum a fixed number of data points
into one) to mimic the camera blurring effect in real
experiments (Figure 1d). We find that the blurring effect can
be simulated by just a few times better time resolution than the
experimental resolution because the information of interest
does not depend on the simulation time resolution (SI, Table
S3 ). Thus, the need and cost of simulating molecular motion at
the nanosecond or even faster times is not necessary for this
purpose. Note for those motions belonging to activities whose
lifetimes are shorter than a few microseconds, the current
techniques cannot observe the information in the smFRET
experiment but rather it is a source of noise.
We hypothesize that a simulated trajectory that has the same

blurring ef fect as the experimental trajectory represents the hidden
truth of the experiment. Thus, we generate a series of simulated
trajectories and compare them to the experimental results. To
do this comparison, a model criterion is proposed to be the
same weighted sum of absolute difference:
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where ki is the rate constant, N is the total number of rate
constants, and the subscripts S and E represent the results
analyzed with any of the same established methods from the
simulated trajectory and the experimental trajectory, respec-
tively. Two identical trajectories give a wL1SE = 0% and
postFRET is set to search for a simulated trajectory with the
minimum wL1SE score. Note that the rate constants analyzed
from experimental and simulated results all contain errors, and
the truth is hidden in the experiment but known in the
simulated results.
The postFRET method is able to find Monte Carlo

simulated smFRET trajectories that regenerate the experimen-
tal results. The true rate constants are known for the simulated
experimental data no matter how we blurred the trajectory.
Thus, for these simulated experiments, we are able to calculate
the score wL1AT and to evaluate the guesses by comparing the
rate constants analyzed by different methods to the true values.
An example is shown in Table 2, where postFRET is able to
reduce the average difference wL1AT to 7% from HaMMy
(44%), SMART (45%), vbFRET (77%), and vbFRET-C
(43%). Many other simulations also confirm this improvement
is general to many models (see SI). A software package with the
trajectory simulation codes (MATLAB), the postFRET codes
(MATLAB), and an example trajectory; estimated analysis
errors/uncertainties are included in the SI.
In postFRET, we use a local search algorithm to find a group

of Monte Carlo simulated trajectories that matches the
experimental results by minimizing wL1SE as the evaluation
function. Figure 2 explains the search procedure to find the
minimum wL1SE.

36 We sequentially search the local neighbor-

Table 2. Confirmation of Improving Accuracy in an Example
Model Using postFRET

simulated true HaMMyd SMART

1a 2 3 1 2 3 1 2 3

1b 15c 25 18 11 18 11
2 5 30 9 27 9 28
3 10 20 4 15 3 15
wL1AT N/A 42%e 43%

vbFRET vbFRET-C postFRETf

1b 17 2 14 16 15 27
2 13 41 9 21 5.8 28
3 0.7 12 5 8 9.5 19
wL1AT 73% 44% 7%

aThe initial state of a transition (i). bThe transition state (j). cThe rate
constant (kij) of the transition in unit s−1 (true values are confirmed to
within ±3% by all methods when not binned). dThe trajectories are
shortened for HaMMy analysis. eThe wL1AT score of the analyzed rate
constants with respect to the true values. fTime resolution 1 ms binned
into 10 ms, each guessed trajectory length is 500 s, scanning time is 21
min. The wL1AT score can be improved to ∼5% at 2000 s length.
Please see the sample trajectory in different format in the subfolder
“ExampleTrajct” of the software package in SI. The errors of the
postFRET analysis have been estimated in the SI.

Figure 2. An example of postFRET search. (a) True rate constants.
(b) A set of initial guesses from experimental results. (c) Scanning for
the k31 value at its neighborhood for the local minimum wL1SE = 18%
(error bars representing the standard deviation of 5 simulations). The
search neighborhood is designed to be exponentially near the initial
guess value, while the true value can be outside of this search range.
(d) All six rate constants are searched around their neighborhoods
sequentially, which yields (e) the best rate constants after the first
round (1st iteration). These values are then used as the starting
guesses for the next iteration. (f) After 3 rounds of scanning, the best
wL1SE score for a scanning of k31 is reduced to 4%, yielding one set of
accepted final guesses. The standard deviation of several acceptable
guesses can be used to estimate the reproducibility of postFRET
simulations. See SI for the algorithm and the MATLAB codes.
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hoods of the rate constants in each iteration. The resulting best
guesses are then used as the initial guesses of the next search
iteration. The theoretical minimum wL1SE is the uncertainty of
the Monte Carlo simulation, which is dependent on the length
of the simulation and the stability of the random function used
in the simulation. Thus, we see a fast drop of the wL1SE score at
the first few iterations but then stabilized at ∼4% rather than
0%. The variation of the rate constants in the tail
comprehensively reflects the reproducibility and the error of
the search algorithm.
The search neighborhood is set to a relatively large scale

(Figure 2c,f), which reduces the probability of getting stuck at
local optimums. The variation of the Monte Carlo simulation
also helps the search algorithm to overcome local optima. Thus,
we find that simulated annealing search (commonly used to
overcome local optimums) or machine learning is not needed
in the models we have tested. However, they are potentially
needed in more complicated models or for higher precision
levels.
The postFRET method works generally in several other

sample models that have four states, five states, six states, with

the sequential reaction model (e.g., A ↔
K1 B ↔

K2 C), or simply a
two-state model (see SI, Tables S4−S10). For example, the
simulated trajectory for the two-state model is shown in Figure
3, when ∼40% of the well times of state S1 and ∼60% of the

dwell times of state S2 are shorter than one-data-point. This
lack of information makes it difficult to extract the true rate
constants from this trajectory. However, if we force a two-state
analysis, postFRET is able to accurately extract the rate
constant at wL1AT = 1% (SI). Future improvements for
postFRET can be investigated, such as different evaluation
functions, scanning methods, more transition models, and
extension to other data format such as single photon counting
data. For proof-of-concept purpose in this report, noise is not
discussed to reduce the complexity, whose effect is expected to
depend on the structure of the noise and the signal-to-noise
ratio.26,29 Preliminary results show that no obvious effect is
observed for a signal-to-noise ratio of ∼10 (data not shown).
This method is expected to be more useful for noisy
experiments than less noisy experiments if the noise can be
properly measured and simulated.
More efficient search algorithms and parallel computational

methods are highly desired in the future to reduce the data
analysis time. Generating one Monte Carlo time trajectory is
fast, e.g., ∼0.3 s for a trajectory with 1 × 105 data points. After

the trajectory is binned into 1 × 104 data points, the
computational time for the rate constant analysis is ∼0.2 s.
However, because of the massive semi-exhaustive search
algorithm adapted in this report, the overall searching time
for the 3 state example is ∼10 min, and the 5-state and 6-state
examples take a few hours to a day to converge.

■ CONCLUSIONS
We have demonstrated the proof-of-concept that adding an
additional Monte Carlo data analysis step significantly increases
the accuracy of experimental data analysis for smFRET. It
allows the retrieval of the information that is blurred in a typical
data collection. We believe that this additional analysis will
improve smFRET research when studying biological systems
with fast transition rates, whose dynamic state lifetimes are at or
below the limitation of many current measurements.
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