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ABSTRACT: Motor proteins, also known as biological
molecular motors, are active enzymatic molecules that support
a variety of fundamental biological processes, including cellular
transport, cell division, and cell motility. They usually function
by transforming chemical energy into mechanical motion, which
propels them along linear structures such as protein filaments
and nucleic acids. Recent single-molecule experiments measured
with high-precision distributions of various dynamic properties
of molecular motors. However, it is difficult to utilize these
observations to obtain a better description of molecular
mechanisms in motor proteins because of the lack of corresponding theoretical methods. To fill this gap, we developed a
new theoretical framework to describe the distributions of dynamic properties of biological molecular motors. It is based on the
method of first-passage processes. To illustrate our approach, the distributions of run lengths of motor proteins are analyzed. It is
found that these distributions depend on the finite length of linear tracks along which the motors move, on the initial position of
the motor proteins along the filaments, and on the intermediate chemical transitions during the enzymatic cycle. The physical
mechanisms of the observed phenomena are discussed.

■ INTRODUCTION

Motor proteins represent important classes of enzymatic
molecules that play crucial roles in supporting and maintaining
major biological processes such as cellular transport, muscles
functioning, cell divisions, transcription, translation, cellular
motility, and many others.1−6 There is a huge variety of different
types of biological molecular motors, including cytoskeleton
motor proteins (kinesins, myosins and dyneins); nucleic acid
motor proteins (DNA and RNA polymerases, nucleases, gyrases
and topoisomerases); and rotarymotor proteins (rotary ATPases
and bacterial flagellar motors).1,2,4 However, it is now well
established that all of them utilize similar mechanisms of
transformation of chemical energy into mechanical work.4

Motor proteins catalyze exotermic chemical reactions of
adenosine triphosphate (ATP) hydrolysis or biopolymerization,
and they are able to convert the fraction of the energy released
during these processes into the work needed to support their
functions. Biological molecular motors have been intensively
investigated in recent decades using multiple experimental and
theoretical methods.4−9 Although some fundamental features of
the mechanisms of motor proteins have been clarified,4 many
aspects of motor proteins functioning, for example, collective
dynamics,10 cooperativity,10 and the role of stochasticity at the
molecular level, remain not well understood.4,5

Recent advances in experimental methods, especially in single-
molecule techniques, have allowed researchers to investigate
properties of motor proteins with a very high temporal and spatial
resolution.4,11 More specifically, distributions of various dynamic

properties of molecular motors have been measured quite
precisely.12−17 These observations include run-length distribu-
tions and distributions of translocating velocities. The stochastic
nature of biochemical transitions that involvemolecular motors is
clearly reflected in these distributions. Thus, themeasurements of
distributions of dynamic properties should provide a valuable
information on the mechanisms of motor proteins functioning.
However, there is a fundamental problem of properly analyzing
these data. Although experimentally observed distributions are
usually described byGaussian curves, it was argued that formotor
proteins, especially under the external forces, this approximation
is not valid anymore.18 Furthermore, current theoretical models
concentrate mostly on calculating mean dynamic properties,
while the distributions are usually not addressed.4,5,7,8

The breakthrough in this problem came recently when a new
approach, which allowed to evaluate distributions of run lengths
and velocities, has been presented.18 This elegant theoretical
model utilized combinatorial arguments to obtain exact analytic
expressions for various distributions of processive molecular
motors. It was shown that under the external forces the
distribution of velocities are non-Gaussian and bimodal, and
this was explained using the discrete nature of stepping
transitions in motor proteins. Although this powerful method
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provided the analytic description of the distributions of dynamic
properties made some important predictions and was able to
describe experimental data for conventional kinesins under no
external loads, it has some limitations. It was assumed that linear
filaments, along which the motors move, are infinite in length,
and there are no other proteins on the lattice that can interfere. In
addition, the theory neglected the effect of the initial positions of
the motor proteins. Furthermore, the intermediate biochemical
transitions during the enzymatic cycle were not fully taken into
account. Because real cellular conditions might strongly deviate
from the simplified conditions assumed in this theoretical
model,18 it is important to have a comprehensive theoretical
description that can take into account these features of cellular
dynamics.
In this paper, we develop a new theoretical framework for

describing the distributions of dynamic properties of generic
processive molecular motors. Our method is based on the first-
passage ideas, and we explained in detail the computation of the
distributions of run lengths. It allows us take into account the
finite length of linear filaments, the starting position of the
molecular motor, and the intermediate chemical transitions
during the stepping. Our calculations indicate that all these
factors may strongly affect the distributions of run lengths. The
physical origins of the obtained results are discussed.

■ THEORETICAL MODEL
Let us consider a single molecular motor that moves along the
linear lattice as shown in Figure 1. Because all dynamic properties,

in principle, can be evaluated from the probabilities of run
lengths,18 we concentrate in this work on calculating the
distribution of run lengths for generic processive molecular
motors as illustrated in Figure 1. Suppose that the motor protein
molecule starts from the lattice site i, and then if it dissociates
from the filament at the site j, the run length will be l = j − i. One
can observe that for the motor it will be the dissociation from the
linear track for the f irst time. Then, naturally, measuring these run
lengths corresponds to recording first-passage dissociation
events. This is the main idea of our theoretical method. We
associate the run-length distributions with the probabilities’
densities of the dissociation events. The method of first-passage
processes is a well-developed mathematical tool that has been
successfully applied for studying various processes in chemistry,
physics, and biology.4,19

Distribution of Run Lengths on Infinite Linear
Filaments. To explain our approach in more detail, let us start
with the simplest situation of infinite linear tracks on which
molecular motors preferentially step in one direction. This was
also considered in the theoretical work of Vu and co-workers.18 A

single motor protein starts from the site i= 0. It canmove forward
(backward) with a rate u (w), or it can irreversibly dissociate from
the linear track into the surrounding solution with a rate γ: see
Figure 1.
The probability to have a run length n for such molecular

motor is identical to the probability of exiting the lattice exactly at
the site n. We can introduce a first-passage probability density
function Fl(t) of detaching from the linear track at the site n at
time t if at t = 0 the molecule started at the site l. Here the
parameter l can be any integer, and the temporal evolution of first-
passage probabilities is governed by a set of backward master
equations

γ= + − + ++ −
F t

t
uF t wF t u w F t

d ( )
d

( ) ( ) ( ) ( )l
l l l1 1 (1)

for l ≠ n; and

γ γ= + + − + ++ −
F t

t
uF t wF t F t u w F t

d ( )
d

( ) ( ) ( ) ( ) ( )n
n n d1 1

(2)

for l = n. In the last equation, the label d describes another state of
the motor protein that dissociated into the solution exactly from
the state n but not from any other state. It is convenient to
postulate the existence of such state because it is motivated by
experimental methods,12−17 and it allows us to employ the
backward master equations method. In our language, the
dissociation from the state n is the same as the first arrival into
the special state d. Consequently, we can write Fd(t) = δ(t), which
means that if the motor just detached from the lattice at the site n
the process is immediately accomplished.
We can solve eqs 1 and 2 by utilizing the Laplace

transformations of the first -passage probabi l i t ies :

∫=∼ ∞ −F s F t e t( ) ( ) dl l0
st . This modifies the original backward

master equations into

γ+ + + = +∼ ͠ ͠+ −s u w F s u F s w F s( ) ( ) ( ) ( )l l l1 1 (3)

for l ≠ n; and

γ γ+ + + = + +͠ ͠ ͠+ −s u w F s u F s w F s( ) ( ) ( ) ( )n n n1 1 (4)

for l = n. In the last equation we utilized the fact that =F͠ s( ) 1d .

We are looking for the solution in the general form =∼F s( ) Axl
l,

where A and x are unknown parameters that can be determined
from substituting the anzats into eqs 3 and 4. This leads to a
quadratic equation, which has two roots:

γ γ
=

+ + + − + + + −
x

s u w s u w uw
u

( ) ( ) 4
21

2

(5)

and

γ γ
=

+ + + + + + + −
x

s u w s u w uw
u

( ) ( ) 4
22

2

(6)

One can notice that the site n is a special one, and it divides the
system into two uniform parts. Then the solutions of eqs 3 and 4
have a different behavior in both parts:

= +∼F s A x A x( )l
l l

1 1 2 2 (7)

for l < n, and

Figure 1. A schematic view of the transport of biological molecular
motors along the linear filaments of lengthN. A singlemolecule starts the
motion from the site i, and it might dissociate into solution from any site
with a rate γ. It steps forward with a rate u, while the backward rate is
equal to w.
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= +∼F s A x A x( )l
l l

3 1 4 2 (8)

for l> n. Because x1 < 1 and x2 > 1 and
∼F s( )l for l≠ n should vanish

at ± ∞, we conclude from eqs 7 and (8) that A1 = A4 = 0. The
coefficients A2 and A3 can be found from the fact that both
solutions for Laplace transforms of the first-passage probability
densities should be the same at l = n, and from direct substitution
into eq 4. Then we obtain for the starting position l = 0

γ

γ
=

+ + + −
͠ −F s

s u w uw
x( )

( ) 4
n

0 2 2
(9)

for n > 0, and

γ

γ
=

+ + + −
͠ −F s

s u w uw
x( )

( ) 4
n

0 2 1
(10)

for n < 0.
To compute the probability for the molecular motor to have

the run length equal to n, P(n), we notice that the first-passage
probability functions calculated above contain a full dynamic
description of the system. Specifically, =F͠ s( 0)0 describes the
probability to dissociate exactly at the site n, which is equal to the
probability to have the run length n, that is, ≡ =͠P n F s( ) ( 0)0 .
Finally, we obtain the explicit formulas for the run-length
distributions

γ

γ

γ γ

>

=
+ + −

+ + + + + −

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

P n

u w uw

u

u w u w uw

( 0)

( ) 4

2

( ) ( ) 4

n

2

2
(11)

γ

γ

γ γ

<

=
+ + −

+ + + + + −

−⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

P n

u w uw

w

u w u w uw

( 0)

( ) 4

2

( ) ( ) 4

n

2

2

(12)

These expressions, as expected, are exactly the same as those
obtained earlier in ref 18. Surprisingly, these results imply that
that ratio of probabilities of the same run lengths in the positive
and negative directions are independent of the dissociation rate,

+
−

= ⎜ ⎟⎛
⎝

⎞
⎠

P n
P n

u
w

( )
( )

n

(13)

This result can be also understood as a simple consequence of the
fluctuation theorems for stochastic dynamics.
The results of calculations for run-length distributions of the

molecular motors walking on the infinite filaments are presented
in Figure 2. Our theoretical model predicts that there are two
branches in the distribution. For the motor that started at the
origin (n = 0), the probability of positive run lengths decays
exponentially with a characteristic length

λ =
γ γ

+
+ + + + + −⎡

⎣⎢
⎤
⎦⎥

1

ln u w u w uw
u

( ) ( ) 4
2

2

(14)

The probability of negative run lengths decays much faster with a
characteristic length,

λ =
γ γ

−
+ + + + + −⎡

⎣⎢
⎤
⎦⎥

1

ln u w u w uw
w

( ) ( ) 4
2

2

(15)

because we typically have u≫ w. We note here that although the
motor protein preferentially moves forward, the stochasticity of
stepping leads to the possibility of negative run lengths. Under
the external load F, which decreases the forward rate u and
increases the backward rate w and the dissociation rate γ, one
should expect that the asymmetric run-length distribution
presented in Figure 2 will becomemore symmetric until reaching
the stall force when the positive and negative run lengths will be
equally probable. This asymmetric run-length distribution is also

Figure 2. Run-length distribution for a generic motor protein on the
infinite linear filament. The starting position of the molecular motors is
at the origin. Blue symbols, which look like a line because of the high
density of points, correspond to positive run lengths, while green
symbols describe the run lengths in the opposite directions. The
following parameters are utilized for calculations: u = 10 s−1 andw = γ= 1
s−1.

Figure 3. Run-length distribution for a generic motor protein on the
infinite linear filament with one intermediate chemical state. The starting
position of the molecular motors is at the origin. Blue symbols
correspond to even positive run lengths, and blue squares correspond to
odd positive run lengths; while green circles describe the even negative
run lengths, and green squares describe the odd negative run lengths.
The following parameters are utilized for calculations: u0 = γ1 = 10 s−1

and u1 = w0 = w1 = γ0 = 1 s−1.
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closely related to the bimodal distribution of motor proteins
velocities as discussed in ref 18.
Distribution of Run Lengths with Intermediate Chem-

ical Transitions. The advantage of our first-passage approach is
that it can be extended to take into account more complex
features of the motor proteins functioning. For example, it is
known that the enzymatic cycles of motor proteins involve
several intermediate biochemical states, from which the motor
can dissociate into the solution with different rates.4 To analyze
this effect, let us again consider a single motor protein that travels
along the infinite linear filament (see Figure 1). We assume that
there is only one intermediate state, which leads to the following
dynamic rules. At even sites of the lattice, the protein steps
forward or backward with rates u0 orw0, respectively, while at odd
sites the corresponding rates are u1 and w1, respectively. In
addition, the dissociation rates from the even sites are γ0, and
from the odd sites they are equal to γ1. Note that here the
enzymatic cycle is completed when the motor makes two steps
forward. The protein molecule starts from the site i = 0, and our
goal is to calculate the run-length distributions.
Following the approach described above, we again introduce

the first-passage probability density function Fl(t) of dissociating
the linear filament at the site n if the motor started at t = 0 at the
site l. For convenience, we assume that the starting position l is
the even number, but the results are independent of this choice.
The corresponding set of backward master equations, which
describe the temporal evolution of the first-passage probabilities,
can be written as (for l ≠ n),

γ= + − + ++ −
F t

t
u F t w F t u w F t

d ( )
d

( ) ( ) ( ) ( )l
l l l0 1 0 1 0 0 0

(16)

γ= + − + ++
+ +

F t
t

u F t w F t u w F t
d ( )

d
( ) ( ) ( ) ( )l

l l l
1

1 2 1 1 1 1 1

(17)

For l = n these equations depend on the value of n being even or
odd:

γ

γ

= + +

− + +

+ −
F t

t
u F t w F t F t

u w F t

d ( )
d

( ) ( ) ( )

( ) ( )

n
n n d

n

0 1 0 1 0

0 0 0 (18)

for even n, while for odd n we have

γ γ= + + − + ++ −
F t

t
u F t w F t F t u w

F t

d ( )
d

( ) ( ) ( ) ( )

( )

n
n n d

n

1 1 1 1 1 1 1 1

(19)

The initial condition requires that Fd(t) = δ(t) .
Applying the Laplace transformations, modifies the backward

master equations,

= +∼ ͠ ͠+ −a F s u F s w F s( ) ( ) ( )l l l0 0 1 0 1 (20)

= + ∼͠ ͠+ +a F s u F s w F s( ) ( ) ( )l l l1 1 1 2 1 (21)

where new parameters are introduced,

γ= + + + =a s u w j, for 0, 1j j j j (22)

At the special site n we have

γ= + +͠ ͠ ͠+ −a F s u F s w F s( ) ( ) ( ) (even sites)n n n0 0 1 0 1 0
(23)

γ= + +͠͠ ͠+ +a F s u F s w F s( ) ( ) ( ) (odd sites)n n n1 1 1 2 1 1 (24)

To solve these equations, we notice that combining eqs 20 and 21
leads to

= +∼ ͠ ͠+ −AF s U F s W F s( ) ( ) ( )l l l2 2 (25)

with

= − + = =A a a u w u w U u u W w w( ), ,0 1 0 1 1 0 0 1 0 1
(26)

At the special site n we obtain

γ= + +͠ ͠ ͠+ −AF s U F s W F s a n( ) ( ) ( ) (for even)n n n2 2 0 1

(27)

γ= + +͠ ͠ ͠+ −AF s U F s W F s a n( ) ( ) ( ) (for odd)n n n2 2 1 0

(28)

eq 25 is an important result because it shows that the
inhomogeneous problem of calculating run-length distributions
with the intermediate chemical state can be mapped into the
homogeneous problemwithout intermediate states, which is very
similar towhat we analyzed in the previous section. Then the first-
passage probability functions can be written as

=∼F s C x( )l
l

1 2
/2

(29)

for l < n; and

=∼F s C x( )l
l

2 1
/2

(30)

for l > n. Parameters x1 and x2 are given by

= − − = + −
x

A A UW
U

x
A A UW

U
4

2
,

4
21

2

2

2

(31)

The coefficients C1 and C2 can be found from the boundary
conditions given in eqs 27 and 28, yielding for even n

γ γ
= =C

a N U

Q
C

a M W

Q
,n n

1
1 0

2
1 0

(32)

and

γ
=F͠ s

a M N

Q
( )n

n n1 0

(33)

In the above expressions, we introduced new parameters:

= − = −− − + +M Ax Wx N Ax Ux,n
n n

n
n n

2
/2 1

2
/2 2

1
/2 1

1
/2 2

(34)

and

= − −+ −Q AM N WUM x WUN xn n n
n

n
n

1
/2 1

2
/2 1

(35)

Similar calculations for odd n produce

γ γ
= =C

a N U
Q

C
a M W

Q
,n n

1
0 1

2
0 1

(36)

and

γ
=F͠ s

a M N
Q

( )n
n n0 1

(37)

Finally, after some simplifications and assuming again the starting
position at l = 0, we obtain the explicit expressions for the run-
length distributions in the systemwith one intermediate chemical
state, = =͠P n F s( ) ( 00 ), leading to the following expressions:
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γ γ

γ γ

γ γ γ γ

> =
+ +

+ + + + − + −
×

+ + + + − + + + + + + − + −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ⎡⎣ ⎤⎦

⎡

⎣
⎢⎢⎢ ⎡⎣ ⎤⎦

⎤

⎦
⎥⎥⎥( )( ) ( )

P n even
u w

u w u w u w u w u u w w

u u

u w u w u w u w u w u w u w u w u u w w

0,
( )

( )( ) ( ) 4

2

( )( ) ( ) 4
;

n

0 1 1 1

0 0 0 1 1 1 0 1 1 0
2

0 1 0 1

0 1

0 0 0 1 1 1 0 1 1 0 0 0 0 1 1 1 0 1 1 0
2

0 1 0 1

/2

(38)

γ γ

γ γ

γ γ γ γ

< =
+ +

+ + + + − + −
×

+ + + + − + + + + + + − + −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ⎡⎣ ⎤⎦

⎡

⎣
⎢⎢⎢ ⎡⎣ ⎤⎦

⎤

⎦
⎥⎥⎥( )( ) ( )

P n even
u w

u w u w u w u w u u w w

w w

u w u w u w u w u w u w u w u w u u w w

0,
( )

( )( ) ( ) 4

2

( )( ) ( ) 4
;

n

0 1 1 1

0 0 0 1 1 1 0 1 1 0
2

0 1 0 1

0 1

0 0 0 1 1 1 0 1 1 0 0 0 0 1 1 1 0 1 1 0
2

0 1 0 1

/2

(39)

γ γ

γ γ

γ γ γ γ

> =
+ +

+ + + + − + −
×

+ + + + − + + + + + + − + −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ⎡⎣ ⎤⎦

⎡

⎣
⎢⎢⎢ ⎡⎣ ⎤⎦

⎤

⎦
⎥⎥⎥( )( ) ( )

P n odd
u w

u w u w u w u w u u w w

u u

u w u w u w u w u w u w u w u w u u w w

0,
( )

( )( ) ( ) 4

2

( )( ) ( ) 4
;

n

1 0 0 0

0 0 0 1 1 1 0 1 1 0
2

0 1 0 1

0 1

0 0 0 1 1 1 0 1 1 0 0 0 0 1 1 1 0 1 1 0
2

0 1 0 1

/2

(40)

γ γ

γ γ

γ γ γ γ

< =
+ +

+ + + + − + −
×

+ + + + − + + + + + + − + −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ⎡⎣ ⎤⎦

⎡

⎣
⎢⎢⎢ ⎡⎣ ⎤⎦

⎤

⎦
⎥⎥⎥( )( ) ( )

P n odd
u w

u w u w u w u w u u w w

w w

u w u w u w u w u w u w u w u w u u w w

0,
( )

( )( ) ( ) 4

2

( )( ) ( ) 4
.

n

1 0 0 0

0 0 0 1 1 1 0 1 1 0
2

0 1 0 1

0 1

0 0 0 1 1 1 0 1 1 0 0 0 0 1 1 1 0 1 1 0
2

0 1 0 1

/2

(41)

One can easily see that for the symmetric case, u0 = u1,w0 =w1 and
γ0 = γ1, these run-length distributions reduce to the results already
obtained for homogeneous system: see eqs 11 and 12. In
addition, the ratio of probabilities of the same positive and
negative run lengths again is independent of the dissociation rates

+
−

=
⎛
⎝⎜

⎞
⎠⎟

P n
P n

u u
w w

( )
( )

n
0 1

0 1

/2

(42)

The results for run-length distributions in the system with the
intermediate chemical state are presented in Figure 3. We again
observe two asymmetric branches in the run-length distributions,

which can be explained by the fact that the motor protein has a
higher probability to step in the positive direction. However, the
presence of the intermediate state modifies the original
exponentially decaying run-length distribution by adding the
oscillations. This is because the molecular motor has different
dissociation rates at the even and the odd sites, giving different
dissociation probabilities from these sites, which look like
oscillations in the run-length distributions. It is expected that
such oscillations should also show up in the distribution of
velocities. Thus, the intermediate chemical transitions in motor
proteins should modify the run-lengths distributions in the way
that reflects the periodicity of enzymatic cycles. Similar behavior
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is expected for more complex chemical kinetic schemes of the
enzymatic action for biological molecular motors.
Run-LengthDistributions on Finite Linear Filaments. In

real cellular systems, the linear tracks on which the motor
proteins move have finite lengths. Our theoretical framework can
be extended to take this into account. Let us consider a linear
filament of the length 2N+1, and we label its sites as running from
−N to N. For convenience, we assume that there is no
intermediate chemical states, and the forward, backward, and
dissociation rates are equal to u, w, and γ, respectively: see Figure
1. It is assumed also that the linear filaments ends are reflecting;
that is, themotor protein at the last site can only go backward or it
can dissociate into the solution. We define Fi,n(t) as the first-
passage probability function of exiting the linear track at the site n
if started at t= 0 at the site i. The following set of backwardmaster
equations describe the evolution of these probability functions,

γ= − +−
− + −

F t

t
uF t u F t

d ( )

d
( ) ( ) ( )N n

N n N n
,

1, , (43)

γ= + − + + ≠+ −
F t

t
uF t wF t u w F t i n

d ( )

d
( ) ( ) ( ) ( ), fori n

i n i n i n
,

1, 1, ,

(44)
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1, , (46)

Using Laplace transformations, these equations are modified into

γ+ + =͠ ͠− − +s u F s u F s( ) ( ) ( )N n N n, 1, (47)

γ+ + + = + ≠͠ ͠ ͠+ −s u w F s u F s w F s i n( ) ( ) ( ) ( ),i n i n i n, 1, 1,

(48)

γ γ+ + + = + +͠ ͠ ͠+ −s u w F s u F s w F s( ) ( ) ( ) ( )n n i n i n, 1, 1,

(49)

γ+ + =͠ ͠ −s u F s w F s( ) ( ) ( )N n N n, 1, (50)

These equations can be solved using the same approach as was
utilized in the previous cases by dividing the system into two parts
depending on the position of the dissociation site. We obtain
explicit expressions for Laplace transforms of the first-passage
probabilities. Specifically, we derive that

γ
γ

=

+ + + − −

͠ −

+ − + − − − − − + −

F s

s u w A uA D D wA

( )

( ) ( / )

N n

N n N n N n N n N n

,

1 1 2 1 2

(51)

where

= − − = − −A a b a b D c d c d( ) , ( )k k k k k k1 1 1 1 (52)

The new parameters are given by

γ γ= + + + = + + + = =a
s u w

u
c

s u w
w

b w u d u w, , / , /1 1 1 1

(53)

and

Figure 4. Run-length distribution for a motor protein on the finite length linear filaments. The starting point for the molecular motor is at the middle of
the linear filament at i = 0. Only positive run-lengths probabilities are shown because for utilized parameters essentially no backward motion is observed.
The following parameters are utilized for calculations: u = 133 s−1 w = 0.6 s−1, γ = 2.3 s−1; and (a) N = 10; (b) N = 100; and (c) N = 1000.
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withΔ = a1
2− 4b1 and∇ = c1

2− 4d1. For (−N + 2)≤ i≤ nwe have

= − −͠ ͠+ − + − −F s a b a b F s( ) [( ) ] ( )i n N i N i N n, 1 1 1 1 , (58)

while for n ≤ i ≤ N − 2 the expressions are,

= − −͠ ͠− − − −F s c d c d F s( ) [( ) ] ( )i n N i N i N n, 1 1 1 1 , (59)

with

We also can show that

Finally, the run-length distribution P(n|i), defined as the
probability of dissociating at the site n if the molecular motor
started at the sitei, is calculated as | = =͠P n i F s( ) ( 0)i n, .
Results of theoretical analysis of run-length distributions on

finite linear tracks are illustrated in Figures 4 and 5. Interestingly,
the parameters used for calculations are the same that have been
utilized to describe the dynamics kinesinmotor proteins in ref 18.

One can see that the finite length influences the run-length
distributions but very locally (see Figure 4). For the motor
protein starting at the site i, the probability of the run length equal
to N − i is significantly increased and deviates strongly from the
exponentially decaying trend. This is easy to understand because
the last site on the filament (in the positive direction) serves as an
effective trap. The molecular motor that reached the last site can
stay there for a long time because it has a lower probability to
move backward (w < u), and this leads to the enhanced
probability to dissociate from the last site and to increase in the
run-length probability P(N|i) . The effect is stronger for short
filaments (Figure 4a), and it decreases withN (Figure 4b,c) since
the motor protein lowers its probability of visiting any site on the
lattice for large N.
Figure 5 shows the effect of the initial position on the run-

length distributions of molecular motors stepping on filaments of
finite length. For the motor proteins moving in the positive
direction, starting the close to the right end severely limits
possible run lengths: for i = 100 zero run length dominates, and
there is a very low probability of negative run lengths (yellow
circles in Figure 5). Moving the initial position further away from
the right end increases the possibility of different run lengths.
However, the trapping effect of the last site on the filament can
still be clearly observed. The probabilities of run lengths equal to
N − i are significantly larger than other probabilities. Theoretical
results presented in Figures 4 and 5 suggest that the starting
position of the motor and the overall length of the linear track
might strongly influence the run-length distributions of
molecular motors.

■ SUMMARY AND CONCLUSIONS
We developed a new theoretical framework to calculate and
analyze the distributions of dynamic properties of biological
molecular motors. It employs the first-passage processes method
that allows us to compute distributions analytically for various
sets of parameters. The framework is specifically applied for
describing the run-length distributions of motor proteins moving
along linear tracks. We easily recover the results obtained in the
earlier theoretical work,18 but the advantage of our method is that
it can be generalized to include more complex realistic features of
the motor proteins dynamics. Our analysis shows that the run-
length distributions might be affected by the presence of
intermediate chemical states in the enzymatic cycles. Although
the overall exponentially decaying behavior is preserved, different
dissociation probabilities from intermediate states modify the
run-length distributions by introducing effective oscillations.
Much stronger effects are observed if the finite length of the linear
filaments and the variation of the starting position of the motor
are taken into account. It is argued that the last site on the lattice
behaves as an effective trap, significantly increasing the
probability of run lengths that end up at this site. For finite
linear tracks, varying the initial position of the molecular motor
limits the possibility of some run lengths, affecting the overall
distribution. It is also argued that these features of the motor
proteins transport should also influence distributions of other
dynamic properties such velocities and diffusivities.
Although the presented theoretical method is capable of

describing the run-lengths distribution for processive biological
molecular motors, it is only the beginning of the comprehensive
investigation on role of stochastic fluctuations in dynamic
properties of motor proteins. It will be interesting to extend this
study in several directions. One will need to look into more
realistic biochemical schemes, into the effect of external loads on

Figure 5. Run-length distributions for a motor protein on the linear
filament of length 2N + 1 = 201. The starting point for the molecular
motor varies from i = 1 to i = 100. The dashed line connects the points
corresponding to the motor being at the last site of the filament. The
following parameters are utilized for calculations: u= 133 s−1,w = 0.6 s−1,
and γ = 2.3 s−1.
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distributions and how changes in the run-lengths distributions
affect the distribution of velocities and diffusivities. Another
interesting question is what are the distributions of dynamic
properties for interactingmolecular motors, since motor proteins
in cells typically function collectively and typically move in
groups. Finally, it will be important to test these theoretical ideas
in extensive single-molecule experiments, and this should lead to
a better understanding of the mechanisms of motor proteins.
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