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ABSTRACT: Variability in gene expression causes genetically identical
cells to exhibit different phenotypes. One probable cause of this variability
is transcriptional bursting, where the synthesis of RNA molecules randomly
alternates with periods of silence in the transfer of genetic information. Yet,
the molecular mechanisms behind this variability remain unclear.
Experiments indicate that multiple biochemical states might be involved
in the production of RNA molecules. Stimulated by these observations, we
developed a theoretical framework to investigate the mechanisms of
transcriptional bursting. It is based on a multistate stochastic approach that
provides a full quantitative description of the dynamic properties in the
system. We found that the degree of stochastic fluctuations during
transcription directly correlates with the number of biochemical states. This
explains experimentally observed variability and fluctuations in the
quantities of the produced RNA molecules. The procedure to estimate the number of relevant biochemical states participating
in the transcription is outlined and applied for analysis of experimental results. We also developed a general dynamic phase
diagram for the transcription process. The presented theoretical method clarifies physical−chemical aspects of the
transcriptional bursting and presents a minimal chemical-kinetic description of the process.

■ INTRODUCTION
Transcription is one of the most fundamental processes in
nature. It consists of copying the genetic information
contained in DNA into complementary RNA molecules,
which eventually leads to proper development, function, and
regulation of cellular organisms.1 Transcription involves a
complex network of biochemical and biophysical processes,
which maintains its robustness in all living systems at all times.
Although significant progress in explaining how the tran-
scription works has been achieved,1 many aspects of its
molecular mechanisms still remain poorly understood.
It is known that cells with identical genomes never exhibit

exactly the same physical characteristics.1 This variability in
gene expression is observed in all cell systems ranging from the
bacterial colonies to specialized tissue cells of complex
multicellular organisms.1−3 However, the molecular origin of
this gene expression noise is not completely understood yet.3 It
has been suggested that transcription, which is the first step of
gene expression, is the dominating factor behind the molecular
fluctuations in gene expression.3,4 These arguments are
supported by experiments exhibiting transcriptional bursting
phenomena when the continuous production of RNA
molecules is interrupted by periods of inactivity.5,6 This
stochasticity of transcription dynamics has been observed in
prokaryotes, yeast, and mammalian cells,4,7,8 and it is
commonly described by a minimal two-state model.5,6,9,10 In
this view, the transcription of a gene randomly switches
between ON and OFF states. In the ON state, the RNA
molecules are generated and degraded via a birth and death

process, whereas in the OFF state, no transcripts are produced
and the degradation happens as in the ON state.
Transcriptional bursting has been intensively investigated in

recent years using both experimental and theoretical
methods.4−25 Many features of this phenomenon are now
better understood.5 However, there are still questions about
the microscopic origin of the transcriptional bursting and its
influence on the dynamic properties of the biochemical system.
The distributions of produced RNA molecules exhibit large
variability in different systems.6,10,14 In some cases, it gives a
purely monotonic behavior (peaked at zero), whereas in other
cases, one or several peaks appear in the distribution.6,12 Yet,
the molecular mechanism of this variability remains unclear. In
addition, experiments show a large variability in stochastic
fluctuations during RNA production, which cannot be easily
connected with the number of produced RNA molecules.12

Furthermore, recent experiments indicate that more than two
biochemical states might participate in the transcription
process, although it is not clear how to determine the number
of relevant states from experimental data.7,8,17−19 At the same
time, current theoretical views on the mechanisms of
transcription bursting mostly employ two-state kinetic
models.12 There are several studies of transcription bursting
that employ multistate models.24,25 In ref 24, the stationary-
state distributions of biochemical states during the tran-
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scription are directly calculated using a spectral method.
However, this mathematically quite elaborate approach
provides only numerical solutions and it does not calculate
the average properties reported in experiments. In ref 25, the
multistate model of transcription bursting is analyzed analyti-
cally. However, this approach assumes that there is only one
ON state and multiple OFF states in the system, which do not
agree with recent observations of multiple production states
during transcription.7,8,17−19 This suggests that more advanced
theoretical models are needed to describe a wider range of
transcription regulation scenarios.7

Stimulated by these observations, in this paper, we develop a
multistate chemical-kinetic approach to analyze the molecular
mechanisms of transcriptional bursting. Our goal is to build a
minimal theoretical description that provides a clear molecular
picture of the underlying processes and which is also consistent
with experimental observations. The discrete-state stochastic
method allows us to evaluate dynamic properties of the
transcription process with multiple switches between various
biochemical states. Several simple models of the transcription
process are explicitly analyzed and discussed. A general
dynamic phase diagram of different behaviors in transcription
is presented and explained. It is shown that the number of
peaks in the distributions of produced RNA molecules is
specified by the number of independent biochemical states,
which is determined by the dominating chemical transitions in
the system. Here, independent biochemical states are defined
as those in which the system spends significant periods of time
during the transcription and which are specified by distinct sets
of chemical-kinetic transition rates. The number of independ-
ent biochemical states might be equal or less than the number
of actual kinetic states in the system. We also find that the
degree of stochastic variations in the number of RNA
molecules directly correlates with the possibility of exploring
various biochemical states; i.e., larger fluctuations correspond
to the systems with more independent biochemical states. In
addition, our method provides a simple approach to evaluate
the number of relevant biochemical states in the system.
Analytical calculations are fully supported by computer Monte-
Carlo simulations.

■ THEORETICAL MODELS AND RESULTS
One-State Model. To understand the origin of variability

and stochastic fluctuations in transcription, it is important to
consider the simplest one-state model presented in Figure 1a,
whereas different multistate models are illustrated in Figure
1b−e. In this model, there is only one biochemical state
(represented as a single chain of connected microstates) in
which the RNA molecules are continuously synthesized with a
rate α and degraded with a first-order rate constant β (see
Figure 1a) so that the production rate remains constant, while
the degradation rate is proportional to the number of existing
RNA transcripts in the system. Since the number of RNA
transcripts n can be very low, a stochastic description of the
dynamics of the system is required.12 This model has been
extensively investigated before, and the reason we present it
here is to better explain how the existence of multiple kinetic
biochemical states affects the statistics of RNA production
during transcription.
We define Pn(t) as the probability of the system to have n

RNA transcripts at time t. Let us assume that the system
reaches the stationary state and Pn(t → ∞) ≡ Pn. The
probability flux to move from a microstate n to a microstate n

+ 1 is given by αPn, and the reverse flux from n + 1 to n is equal
to (n + 1) βPn+1. Because the system can be viewed as a single
chain of sequential microstates (see Figure 1a), the overall flux
between every two neighboring microstates in the stationary
state must be zero, which leads to

α β= + +P n P( 1)n n 1 (1)

Combining this result with the normalization condition
(∑n = 0

∞ Pn = 1) gives explicit expression for the stationary
distribution of produced RNA molecules in the one-state
model

=
!

−
P

x
n
e

n

n x

(2)

where x is an equilibrium constant for the synthesis/
degradation process defined as x = α/β. This is a well-
known Poisson distribution, which is illustrated in Figure 2a.6

The explicit expression for the distribution allows us to
evaluate all relevant dynamic properties of the RNA
production in this model. First, the average number of RNA
transcripts, ⟨n⟩, can be calculated as

Figure 1. Chemical-kinetic schemes for multistate models: (a) one-
state model, (b) two-state model, (c) “Poisson with zero spike”
model, (d) general multistate model, and (e) three-state model.
Details of the models are explained in the text.
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∑⟨ ⟩ = =
=

∞

n nP x
n

n
0 (3)

Thus, the average number of RNA molecules in the system is
given by the equilibrium constant for the RNA synthesis/
degradation process. Similarly, one can calculate other
moments of the distribution of produced RNA molecules.
The second moment is given by

∑⟨ ⟩ = = +
=

∞

n n P x x
n

n
2

0

2 2

(4)

From eqs 3 and 4, one can estimate the distribution variance σ2

σ = ⟨ ⟩ − ⟨ ⟩ =n n x2 2 2 (5)

To quantify the degree of stochastic fluctuations, it is
convenient to introduce a dimensionless parameter F, known
as the Fano factor, which is defined as F = σ2/⟨n⟩. It is easy to
show that in the one-state model, we always have F = 1, and
this is the signature of the Poisson distribution. Because
experiments clearly show deviations from the Poisson
distribution,6,10,15 one can see that multistate models are
needed to properly describe the dynamics and fluctuations in
the transcription process.
General Multistate Model. Let us consider a general

multistate model for the transcription, as presented in Figure
1d. It is important to note here that, following our goal of
presenting a minimalist theoretical framework, in this
approach, we do not take into account various feedback
mechanisms of genetic regulation, which might be impor-
tant.26,27 The system can be found in one of m kinetic
biochemical states (m chains of microstates), and the
production rate in the state j (j = 1,..., m) is equal to αj,
whereas the degradation rate constant is β; i.e., it is the same in
all states. We define koff

(j) as the transition rate from the state j to
j + 1 and kon

(j) as the transition rate from the state j to j − 1
(Figure 1d). It is convenient also to define xj = αj/β and γj =
koff
(j)/kon

(j+1) as equilibrium constants for RNA synthesis/
degradation in the state j and for the switching transitions
between the states j and j + 1, respectively.
We define Pn

(j)(t) (j = 1,..., m) as the probability of being in
the biochemical state j with n RNA molecules at time t. The
temporal evolution of the system can be described by a system
of m master equations for n ≥ 1

α β

β α

= + + +

− + +

− +
P t

t
P t k P t n P t

n k P t

d ( )
d

( ) ( ) ( 1) ( )
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+
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For n = 0, the master equations have a slightly simpler form
because the number of RNA transcripts cannot be less than
zero

β α= + − +
P t

t
k P t P t k P t

d ( )
d

( ) ( ) ( ) ( )0
(1)
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(2)

0
(2)

1
(1)
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(1)

1 0
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(9)
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( )
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The stationary-state limit occurs when = 0P t
t

d ( )
d
n

j( )

and Pn
(j)(t) ≡

Pn
(j).
To obtain a dynamic description of the RNA production in

this system, the generating function method is employed.9

More specifically, we define a set of new functions gj(z) (j =
1,..., m)

∑= + + + ··· =
=

∞

g z P zP z P z P( )j
j j j

n

n
n

j
0
( )

1
( ) 2

2
( )

0

( )

(12)

It can be shown that

∑′ =
=

∞

zg nz Pj
n

n
n

j

0

( )

(13)

where ′ ≡gj

g z

z

d ( )

d
j and

∑″ + ′ =
=

∞

z g zg n z Pj j
n

n
n

j2

0

2 ( )

(14)

In addition, from eq 12, we obtain

∑= =
=

∞

g z P( 1)j
n

n
j

0

( )

(15)

and the normalization condition gives

∑ ∑ ∑= = =
= =

∞

=

P g z( 1) 1
j

m

n
n

j

j

m

j
1 0

( )

1 (16)

Then, the master equations can be rewritten in terms of the
generating functions as

β α′ = − +yg y y k g y k g y( ) ( ) ( ) ( )1 1 off
(1)

1 on
(2)

2 (17)

Figure 2. Stationary distributions of RNA molecules in various
models: (a) one-state and Poisson with zero spike models. Parameters
used for calculations are: α = 30, β = 10, kon = 10, and koff = 100. (b)
Two-state models. Parameters used for calculations are: α = 15, β = 1,
kon = 0.01, and koff = 0.1 for distribution with two peaks and α = 15, β
= 1, kon = 1 and koff = 0.1 for distribution with one peak.
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m
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m
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( )
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( 1)

1 (19)

where y = z − 1. The generating functions can be expanded
around y = 0, producing

≃ + + + ···g y d f y h y( )
1
2j j j j

2
(20)

The unknown coefficients dj, f j, and hj can be found by
substituting the expansion into eqs 17−19 and balancing terms
of the same order of y on both sides of these equations. This
yields

+ = +−
−

+
+d k k k d k d( )j

j j j
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The first and second moments of the distributions can be
expressed in terms of these coefficients, leading to

∑

∑
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Thus, the stationary properties of the system can be explicitly
evaluated if we know the relations between the coefficients dj,
f j, and hj and the transition rates. By taking into account the
normalization condition when eq 16 leads to∑j = 1

m dj = 1, eq 21
can be solved to produce

γ

γ
=

∏
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=
−

=
−

=

d
1

j
i
j

i

k
m

i
k

i

1
1

1
1

1 (26)

where γj = koff
(j)/kon

(j+1), as defined above. This allows us to
evaluate ⟨n⟩ at general conditions from eq 24. We could not
obtain a compact general expression for f j but for any specific
value of m (number of states in the system), the explicit
calculations can be done using matrix equations, as we show
below in detail for m = 3. At the same time, some general
results can be obtained in the limiting cases. If the transition
rates between states are small, kon

(j), koff
(j) ≪ αj, β, then from eq

22, we have f j ≈ xjdj, which leads to

∑⟨ ⟩ = +
=

n x x d( )
j

m

i j j
2

1

2

(27)

In this limit, the expression for the Fano factor is given by

= +
∑ − ∑

∑
= =

=

( )
F

x d x d

x d
1

j
m

j j j
m

j j

j
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j j

1
2

1

2

1 (28)

which corresponds to large stochastic fluctuations (larger than
those for the one-state model). In the limit when the switching
rates are very large, kon

(j), koff
(j) ≫ αj, β, we obtain

i

k

jjjjjjj
y

{

zzzzzzz∑ ∑⟨ ⟩ = +
= =

n x d x d
j

m

j j
j

m

j j
2

1

2

1 (29)

and

σ=
⟨ ⟩

=F
n

1
2

(30)

In this case, the stochastic fluctuations are minimal and the
system can be viewed as an effective one-state model with
properly renormalized transition rates.
To understand the transcriptional bursting, we have to

discuss the meaning of states in our analysis. Here, we
distinguish kinetic biochemical states from independent
biochemical states. Each kinetic biochemical state is specified
by a unique production rate and a set of transition rates, some
of which may be the same. The independent biochemical states
are defined as the states that are visited for significant periods
of time at stationary-state conditions and which have distinct
sets of transition rates. Clearly, the number of independent
biochemical states could be the same or smaller than the
number of kinetic biochemical states and it depends on the
amplitudes of transition rates. For example, if switching rates to
a specific state are large in comparison with other transitions,
the system will effectively explore only this state and the
number of independent states is equal to 1.
The general results for the degree of variability in RNA

production in both limiting cases can be explained using the
following arguments: for slow transition rates, there are
generally m independent biochemical states and this leads to
large stochastic fluctuations since the system can explore all of
them in the stationary-state limit. For fast transition rates, there
is an effective equilibrium between all biochemical states
involved in transcription, which can be viewed as having only
one effective independent “state” in the system. In this case,
the situation is similar to the one-state model with Poisson
distribution where the stochastic fluctuations are minimal. For
intermediate transition rates, various dynamic behaviors are
expected depending on the number of independent bio-
chemical states (states with distinct chemical-kinetic transition
rates where the system spends significant periods of time), as
we show below for the three-state model. Thus, we argue that
the amplitude of stochastic fluctuations in the transcription
correlates with the number of relevant biochemical states in
the system.
Our analytical results for the general multistate model also

provide insights into how to evaluate the number of
independent biochemical states from the experimental data.
To explore all states m, the system needs to have slow
transition rates so that each state can be visited for significant
periods of time. If we assume first that transition rates between
states are comparable, i.e., kon

j ≃ koff
j ≪ αj and β, then we can

estimate that dj ≃ 1/m and employ eq 28. If all equilibrium
constants for synthesis/degradation in all states are also
comparable, xj ≃x, then we obtain
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⟨ ⟩ ≃ ≃n x F, 1 (31)

This result is easy to understand. All chemical-kinetic rates for
each state are comparable, and this means that these states are
not distinguishable, leading to an effectively single biochemical
state with the expected Poisson dynamics.
A more realistic situation is when at least one of the

equilibrium constants for synthesis/degradation is larger than
the others, i.e., for a specific state j, we have xj = x ≫ xi≠j.
Then, our calculations yield

⟨ ⟩ ≃ ≃ + −n x m F x m/ , 1 (1 1/ ) (32)

The last equation can be rewritten as

≃ + − ⟨ ⟩m F n1 ( 1)/ (33)

This is an important result because it shows how to obtain the
information on underlying chemical-kinetic network of states.
From the experimentally measured values of the average
number of RNA transcripts and the Fano factor, one can
estimate the number of relevant biochemical states in the
system. Because our arguments are presented for the situation
with largest possible fluctuations in the system, eq 33 evaluates
the number of independent states that can explain the
observed transcription dynamics and thus it gives the minimal
estimate on the number of kinetic biochemical states. For
example, measurements of transcriptional bursting in Escher-
ichia coli bacteria gave ⟨n⟩ ≃ 10 and F ≃ 4.1,6 which after
substitution into eq 33 suggests that m ≃ 2. Similar results (see
Figure 3) can be obtained for experimental data on other genes

in this bacteria.10 It shows that for E. coli bacteria, the two-state
chemical-kinetic network explains well the observations for
most genes. This means that the two-state description is
generally reasonable for this system and there is no need to
invoke more biochemical states on the basis of these
experimental data. However, the situation might be different
in other organisms. In addition, the presence of feedback
mechanisms might also affect our conclusions on the number
of relevant states in transcriptional bursting.26,27

Two-State Model. To illustrate how our general approach
works, let us examine a specific model that has been already
used to describe transcriptional bursting in the past. We start
with the two-state model that features an ON state and an
OFF state, as presented in Figure 1b. In the ON state, the
RNA molecules are synthesized with a rate α and degraded
with a rate constant β. The system can stochastically switch to
the OFF state with a rate koff where degradation with the rate
constant β is only taking place. From the OFF state, it can also
transition back to the active state with a rate kon (see Figure
1b). This model has been theoretically analyzed before.9 For
this reason, we only briefly present the main results here,

emphasizing that this model is a special case of our more
general multistate description.
Two generating functions can be introduced for the

stationary-state analysis of this model9

∑ ∑= =
=

∞

=

∞

g z P g z P( ) , ( )
n

n
n

n1
0

(1)
2

0

(2)

(34)

We expanded them around y = 0 (y = z − 1), producing

≈ + + + ···g y d f h y( )
1
21 1 1 1

2
(35)

and

≈ + + + ···g y d f h y( )
1
22 2 2 2

2
(36)

The expansion can be substituted back into master equations
to determine the unknown coefficients d1, d2, f1, f 2, h1, and h2.
From this procedure, we obtain

γ
γ

γ
=

+
=

+
d d

1
1

,
11 2

(37)

and

=

=

α
γ

β
β

α
γ β

+
+

+ +

+ + +

f

f

,k
k k

k
k k

1 (1 )
( )

( )

2 (1 ) ( )

on

on off

off

on off (38)

In addition, it can be shown that

+ =h h xf( )1 2 1 (39)

The types of distributions of RNA transcripts that are possible
in the two-state model are presented in Figure 2b. Depending
on the kinetic parameters, one or two peaks might be observed
in the distributions of the produced RNA molecules. Now, we
can determine the first and the second moments of the
distribution

∑⟨ ⟩ = + = ′ + ′ | = +
=

∞

=n n P P g g f f( ) ( )
n

n n y
0

(1) (2)
1 2 0 1 2

(40)

⟨ ⟩ = ∑ + = ″ + ″ |
= + + +

=
∞

=n n P P g g
h h f f

( ) ( )n n n y
2

0
2 (1) (2)

1 2 0

1 2 1 2 (41)

Using eqs 37−39, we obtain

γ
⟨ ⟩ =

+
n

x
1 (42)

γ
β

β γ
⟨ ⟩ =

+
+

+ +
+

+
n

x k
k k

x
(1 )

( )
( ) 1

2
2

on

on off (43)

Finally, for the Fano factor, our calculations yield

γ
γ

β
β

= ⟨ ⟩ − ⟨ ⟩
⟨ ⟩

= +
+ + +

F
n n

n
x

k k
1

(1 ) ( )

2 2

off on (44)

The results of the calculations are presented in Figure 4.
Adding a second state where only degradation is taking place
lowers the mean number of the produced RNA molecules and
increases the stochastic fluctuations. One can see again that the
largest fluctuations are achieved for slow switching rates
between biochemical states. Increasing the switching frequency

Figure 3. Estimate of the minimal number of independent
biochemical states m from corresponding experimental measurements
of F and ⟨n⟩ for different genes in E. coli (data from ref 10).
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lowers the fluctuations because the system can now be viewed
as being in effectively one biochemical state.
Poisson with Zero Spike Model. To describe exper-

imental data from transcription, a simpler model, called
Poisson with zero spike, has been introduced.13 It is again
assumed that the system can be found in an ON or OFF state,
as shown in Figure 1c. However, although any number of
microstates can be observed in the ON state, the OFF state can
only have zero RNA molecules. It has been argued that this
approximate description is valid for slow transition rates
between the states.13

As before, Pn
(j)(t) is the probability of finding the system in

the state j (j = 1 is for the ON state, and j = 2 is for the OFF
state) at time t having n RNA molecules. In the ON state, n
can take any value, whereas in the OFF state, n = 0 is the only
possibility. Considering the stationary-state limit, it was found
that13
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γ

γ γ
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+
=

+
=

+ !

−

≥

−
P P P

x
n

e
(1 )

,
(1 )

,
e
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0
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1
(1)

(45)

It was also shown that the average number of produced RNA
molecules and the Fano factor are given by13

γ
γ

γ
⟨ ⟩ =

+
= +

+
n

x
F

x
(1 )

, 1
(1 ) (46)

Because this model can be viewed as a single chain of
microstates, at large times, the flux through each bond between
two microstates must be zero. This leads to the following two
conditions on stationary probabilities

= + +xP n P( 1)n n
(1)

1
(1)

(47)

and

γ =P P0
(1)

0
(2)

(48)

One can see that in eqs 45 the first condition (eq 47) is always
satisfied whereas the second condition (eq 48) is generally not
valid. This suggests that the analysis of the Poisson with zero
spike model should be revisited.
Using the conditions presented in eqs 47 and 48 and

combining them with the normalization,∑n = 0
∞ Pn

(1) + P0
(2) = 1,

we obtain the following stationary-state probabilities
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The distribution is illustrated in Figure 2a. Then, the
expressions for the mean number of the produced RNA
molecules and the Fano factor are given by
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γ

γ
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+
= +
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, 1
(e )

x

x x (50)

One can see that these results differ from the formulas
obtained in ref 13 (see eq 46) but they approach each other if
very large degradation rates are assumed, i.e., when β≫ α, and
we have x ≈ 0. However, on the basis of the experimental
observations,6,10 this seems to be unrealistic since it would
imply a very low mean number of RNA molecules in the
system. On the basis of these results, we can conclude that it is
not reasonable to utilize this model for analyzing transcrip-
tional bursting phenomena.

Three-State Model. Since experiments indicate that more
than two biochemical states might be involved in tran-
scription,7 we analyze a three-state model shown in Figure 1e.
This will also explicitly illustrate our general multistate kinetic
approach. We again employ Pn

(i)(t) (i = 1,2,3) as the probability
to find the system with n RNA transcripts at time t, which are
governed by the corresponding master equations. Assuming
the system is in a stationary state, we introduce three
generating functions

∑=
=

∞

g z z P( )i
n

n
n

i

0

( )

(51)

for i = 1−3.
Our general method suggests that generating functions

should be expanded around y = 0, where y = z − 1, as given in
eq 20. Then, the relevant dynamic properties of the system
(mean and variance in the number of produced RNA
molecules) can be expressed in terms of the expansion
coefficients di, f i, and hi. From eq 26, one can obtain

= =

=
γ γγ

γ
γ γγ

γγ
γ γγ

+ + + +

+ +

d d

d

, ,1
1

(1 ) 2 (1 )

3 (1 )

1 1 2

1

1 1 2

1 2

1 1 2 (52)

Then, the average number of RNA transcripts in the three-
state model is given by

γ γ
γ γγ
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+ +
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x x x

1
1 2 1 3 2

1 1 2 (53)

To evaluate the second moment, we need to know f1, f 2, and
f 3, which can be obtained by solving the system of eqs 17−19.
It can be presented conveniently in the matrix form
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Solving this system leads to the following expressions for
coefficients f i

β β β β
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Figure 4. First moments and the Fano factors for the distributions of
RNA copies in various models. Left panel: mean number of RNA
molecules as a function of the state transition equilibrium constant.
Parameters used for calculations are: x = 5. Right panel: the Fano
factor as a function of the rate koff. Parameters used for calculations
are: α = 50, β = 10, and kon = 10.
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where the auxiliary functions Y and S are defined as
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Finally, utilizing eqs 24 and 25, we derive the explicit formula
for the Fano factor in the three-state model
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Our theoretical calculations are fully verified using extensive
Monte-Carlo computer simulations with a stochastic Gillespie
algorithm.28 Using analytical results and computer simulations,
we investigate different dynamic behaviors in the system.
Assuming that the corresponding transition rates between
states are the same (kon

(i) = kon, koff
(i) = koff), we develop a

comprehensive dynamic phase diagram for the three-state
model of transcription. This is presented in Figure 5f where the
Fano factor is plotted as a function of the normalized transition
rates between the states using a contour map. Five different

dynamic regimes are identified in the three-state model on the
basis of the number of distribution peaks that are associated
with the number of independent biochemical states (see Figure
5a−e). We explored more general conditions (kon

(i) ≠ kon, koff
(i) ≠

koff, and other arbitrary transition rates), and similar features
and dynamic phase diagrams are observed in all situations.
To explain this dynamic behavior, we extended theoretical

arguments presented in ref 12. In regime I, there are three
peaks corresponding to having three independent states. The
system experiences the largest fluctuations here because all
switching rates are very small, and all three states are explored,
i.e., each biochemical state is visited for long periods of time.
The Fano factor is maximal in this regime. In regime II, the kon
rate increases and this lowers the probability of exploring state
3. As a result, the fluctuations decrease because only two
independent biochemical states are probed in this case: state 1
and state 2. Further increase in kon leads to the regime IV
where only state 1 is occupied most of the time and the Fano
factor has the lowest value. If we move from regime I by
increasing the koff rate, we first go into regime III, where mostly
the states 2 and 3 are explored. Increasing the koff rate even
more leads to the regime V where only state 3 is visited. These
explanations of the dynamic behavior of the three-state model
are valid for conditions when there is no equilibrium between
different biochemical states. In the case of large transition rates
(kon, koff ≫ αj,β), the system will transform into a single
equilibrium state where the effective synthesis and degradation
rates are averages of the rates of individual states. This is
illustrated in Figure 6 where one can see that there is always a
single peak in the distribution but the location of the peak
depends on the switching equilibrium constant γ.

The presented analysis suggests the following physical
picture of the transcription processes: In the system with m
kinetic states, the number of independent biochemical states
can vary from 1 to m depending on the amplitudes of the
kinetic rates that couple them. If the transition rates between
the states are slow in comparison with growth and degradation
rates, the system can explore all m biochemical states and this
corresponds to maximal stochastic fluctuations in the system. If
transition rates between states are fast in comparison with
other rates, then there is an equilibrium between all
biochemical states and there is only one independent state
(the equilibrium state) in the system. The same picture is
observed if only the switching rates to a specific state are high
so that other states cannot be visited. This corresponds to the
weakest fluctuations in the system. For intermediate values of
the transition rates, one expects that equilibrium could be
established only between several states or more than one state
can be visited and the number of independent biochemical

Figure 5. Dynamic properties of RNA production in the three-state
model. (a−e) Examples of the five different types of RNA
distributions calculated with α1 = 10, α2 = 100, α3 = 1000, and β =
1: (a) regime IV with kon = 10, koff = 0.1; (b) regime II with kon = 0.1,
koff = 0.01; (c) regime III with kon = 0.03, koff = 0.1; (d) regime IV
with kon = 5, koff = 0.009; (e) regime V with kon = 0.01, koff = 10. (f) A
dynamic phase diagram, which shows in the contour plot the
amplitude of the Fano factor as the function of the normalized
transitions rates between the state. Solid lines give qualitative borders
between different types of RNA distributions presented in parts (a)−
(e). The rates are in arbitrary units.

Figure 6. Distributions of the produced RNA molecules for
equilibrium conditions for transitions between different biochemical
states. The parameter γ is the switching equilibrium constant.
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states can range from 1 to m. This indicates that generally, up
to 2m − 1 different dynamic regimes can be observed and each
of them is specified by different numbers and locations of
peaks in the distributions of produced RNA molecules. Thus,
the underlying chemical-kinetic network of biochemical states
that support the transcription might lead to a very rich
dynamic behavior, suggesting multiple ways of regulating the
transcription processes.

■ SUMMARY AND CONCLUSIONS
We investigated the phenomenon of transcriptional bursting by
developing a general chemical-kinetic approach. It employs a
multistate stochastic model, which yields analytical calculations
for relevant dynamic properties of transcription. A simple
method of evaluating the number of independent biochemical
states is proposed and discussed. Our theoretical approach
successfully reproduces the analysis for the two-state model of
transcription. In addition, we corrected the results for the
Poisson with zero spike model, which also has been used to
explain transcriptional bursting.13 We developed a general
dynamic phase diagram for a multistate system, and it was
specifically illustrated using a three-state model. Our main
findings are that the number of peaks in the distribution of
RNA molecules correspond to the number of independent
biochemical states in the system and for fixed synthesis and
degradation rates the degree of stochastic fluctuations directly
correlates with this number. By changing the transition rates
between the states, the number of independent biochemical
states can be varied. The theoretical approach also allows us to
evaluate the number of independent biochemical states from
the experimental data. These results, which were checked by
extensive Monte-Carlo simulations, are able to explain
available experimental observations.
Although our theoretical method was able to clarify some

features of transcriptional bursting phenomena, it is important
to note that our description is rather simplistic because many
complex processes that are involved in transcription are not
taken into account.23 For example, it is assumed that all
chemical rates are constant in our theoretical approach,
whereas it is more realistic to expect some fluctuations due
to the variability of the substrate and enzyme concentrations in
real biological cells. Rate fluctuations may also be caused by
transcriptional feedback controls found in some bacterial
systems.26,27 Recent experiments also suggest that transcription
is strongly affected by interactions between RNA polymerases
on DNA, but our method does not take this into account.16 It
is still unclear what specific molecular events force switches
between different biochemical states in transcription.5 Another
puzzling observation, which again cannot be explained in our
approach, is that the transcriptional bursting is mostly gene-
independent in bacteria whereas in eukaryotes, it displays more
gene-specific behavior, although there is still no full agreement
on these results.5 It is also important to note that the
substantial noise in the gene regulation dynamics can also be
generated in the process of diffusion of transcription factors to
their binding sites, particularly for low-concentration tran-
scription factors and for transient dynamics. This has been
studied recently in various theoretical models,29−32 but it is not
accounted in our theoretical approach. Furthermore, the
presented theoretical approach does not take into account
important feedback regulation processes.26,27 However, despite
these shortcomings, our theoretical model provides a simple,
clear and, most importantly, quantitative physical−chemical

description of the transcriptional bursting phenomena. It will
be important to analyze our theoretical results using more
advanced theoretical and computational methods, as well as to
test them in experiments.
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