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ABSTRACT: Motor proteins, also known as biological molecular motors,
play important roles in various biological processes. In recent years,
properties of single-motor proteins have been intensively investigated using
multiple experimental and theoretical tools. However, in real cellular
systems biological motors typically function in groups, but the mechanisms
of their collective dynamics remain not well understood. Here we investigate
theoretically distributions of run lengths for coupled motor proteins that
move along linear tracks. Our approach utilizes a method of first-passage
processes, which is supplemented by Monte Carlo computer simulations.
Theoretical analysis allowed us to clarify several aspects of the cooperativity
mechanisms for coupled biological molecular motors. It is found that the
run length distribution for two motors, in contrast to single motors, is
nonmonotonic. In addition, the transport efficiency of two-motor complexes
might be strongly increased. We also argue that the degree of cooperativity
is influenced by several characteristics of motor proteins such as the strength of intermolecular interactions, stall forces,
dissociations constants, and the detachment forces. The application of our theoretical analysis for several motor proteins is also
discussed.

■ INTRODUCTION
Motor proteins, also called biological molecular motors,
correspond to several classes of active enzymatic molecules
that are crucial for successful functioning of cellular systems.1−4

They support most major biological processes, including
transfer and maintaining of genetic information, muscles
functioning, cell division, intracellular transport, and cell
motility.1−7 Malfunctioning of motor proteins frequently leads
to serious diseases, including cancer and various neuro-
degenerative disorders.8,9 It is known that motor proteins
move along linear filaments, such as microtubules, actin
filaments, or nucleic acids, and catalyze exothermic chemical
reactions, such as the hydrolysis of adenosine triphosphate
(ATP) or biopolymerization.4,10 Molecular motors are able to
convert a fraction of the released chemical energy into
mechanical work that is necessary for their functions.1,2,4

Because of their important roles in cellular processes, motor
proteins have been widely investigated using a variety of
experimental and theoretical methods.3,4,6,7,11 With recent
advances in single-molecule experimental techniques, the
properties of single-motor proteins have been quantified with
high temporal and spatial resolutions.4,11 Motor proteins
transporting cellular cargoes along linear protein filaments
have been classified as nonprocessive and processive, depending
on the strength of their interactions with linear tracks.4 After
associating to linear filaments, nonprocessive motors walk
relatively short distances before detaching. At the same time,
processive motors can walk longer distances. To quantify the
degree of processivity, run lengths distributions for various

motor proteins have been precisely measured by several
groups.12,13 This provided crucial information on the mecha-
nisms of biological molecular motors because the run length
distributions of single-motor proteins have been also theoret-
ically evaluated recently.14,15

Although properties of single-motor proteins are important
for understanding biological transport phenomena,4 in real
biological systems motor proteins typically work in teams that
might include many motor species.4,7,16,17 However, the
mechanisms of collective behavior of biological motors remain
not well understood.4,7,16,18 One of the barriers to measure the
properties of multiple-motor proteins using single-molecule
experimental techniques is to control the actual number of
motors participating in the transport and their binding positions
on the cargo. As a result, controversial experimental
observations on collective dynamic properties of multiple-
motor proteins have been reported.16,19,20 Although the issue of
precise determination of number of participating motors has
been partially solved by employing the engineered DNA
scaffolds,21,22 only few dynamic properties of motor proteins
assemblies have been reliably measured so far.16 The
distributions of run lengths of coupled motor proteins have
not been measured yet, although the average run lengths have
been reported.16 But the main problem for understanding the
collective dynamics of motor proteins is a lack of theoretical
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methods that would quantitatively describe the distributions of
dynamic properties of motors and connect themwith underlying
molecular properties.
Theoretical tools are crucial for our efforts to clarify the

molecular mechanisms of motor proteins transport.4,16,18,23,24

The run length distributions of single motors has been recently
explicitly calculated under an assumption of infinite linear
tracks.14 A more general theoretical framework to evaluate the
run lengths distributions at different and more realistic
conditions, such as the finite length of tracks and the presence
of intermediate chemical states, has been also presented.15

Nevertheless, there are no explicit theoretical analyses on the run
length distributions of several coupled motor proteins. Notice-
ably, the transport by two motors has been investigated in
several previous theoretical studies, but the coupling between

the two motors was neglected, or only qualitative arguments
about the run length distribution were given.25,26

In order to fill a theoretical gap, in this paper, we develop a
new theoretical approach to quantify the transport of two
coupled motor proteins. Using the method of first-passage
processes that was successful in describing single motors,4 the
run lengths distributions for two coupled motor proteins are
explicitly evaluated. Our theoretical results, which are supported
by extensive Monte Carlo simulations, allow us to quantify the
efficiency and the cooperativity in the motor proteins transport.
The application of this theoretical analysis for several real motor
proteins is also discussed.

■ THEORY
Run Length Distributions for Two Coupled Motor

Proteins. Let us consider a system of two coupled motor

Figure 1. (A) Schematic illustration of the cellular cargo motion transported by two motor proteins. When the distance between the two motor
proteins increases, the tension between them increases too. This effect is modeled as an elastic spring between two motors. (B) Chemical kinetic
scheme for the system with two interacting molecular motors walking along the linear track. Orange circles describe the leading motor, while blue
circles describe the trailing motor in two-motor-bound states. The process described in eq 5 is highlighted by the dashed box in order to explain better
the method of backward master equations.
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proteins moving along infinite linear track, as illustrated in
Figure 1. This linear track might, for example, represent a
protein filament (microtubules or actin filaments), or it might
correspond to nucleic acids (DNA and RNA molecules).
Assuming that the motor proteins complex moves preferentially
in one direction, one can identify leading and trailing motors
(see Figure 1A). If the leading motor is at the site j while the
trailing motor is at the site i, this state of the system is denoted as
(i, j). It is assumed that two motors interact with each other, and
the interaction potential is modeled as an elastic spring with a
spring constant k. Therefore, for any two-motors-bound state (i,
j), the intermotor tension, f, can be represented as

= − −f kd j i l( )0 (1)

where d is the motor step size, which is equal to the distance
between 2 neighboring lattice sites (Figure 1), and l0 represents
the site separation between the two motors in the equilibrated
state ( f = 0). For convenience, we set l0 = 1.
We assume that the system starts from a two-motors-bound

state (0, 1). Each motor can walk forward from the state (i, j) (if
the forward site is available) with an interaction-dependent rate
uij, or it can unbind from the linear filament with an interaction-
dependent dissociation rate γij; see Figure 1B. To simplify
calculations, we neglected the possibility of backward steps
because for most motor proteins the forward rate is orders of
magnitude higher than the backward rate in the absence of
external forces, and we consider here mostly the dynamic and
not energetic aspects of the motor proteins motion.4,27,28 One
should notice that biological molecular motors are functioning
in cells under nonequilibrium conditions when the detailed
balance is always broken. Thus, this is a reasonably safe
approximation, which is needed in order to obtain an analytical
solution. The stepping of the leading motor corresponds to a
transition from the state (i, j) to (i, j + 1), and the corresponding
stepping rate depends on the interaction as

= − = [ − − − ]u u f F u kd j i F(1 / ) 1 ( ( 0.5) / )ij 0 s 0 s (2)

where u0 is the forward rate in the absence of interactions, ⟨f⟩ is
the average tension between two motors, and Fs is the stalling
force, which corresponds to the interaction that prohibits the
transition. Please note that the factor 0.5 in eq 2 comes from the
following arguments. The stepping of the leading motor
corresponds to a transition from the state (i, j) to (i, j + 1).
During this stepping process the intermotor tension f is not
constant but gradually increasing from kd(j− i− 1) to kd(j− i).
For convenience, we choose here the average value of f,

⟨ ⟩ = = − −− − + −f kd j i( 0.5)kd j i kd j i( 1) ( )
2

. It should be noted

also that the dependence of the stepping rate on the tension is a
complex function, but here we make an assumption that this
dependence is a linear function of the force. Although this is
clearly a strong oversimplification,4,6 it is expected that this
should not affect much the main physical predictions of the
model.
The stepping of the trailing motor shifts the system from the

state (i, j) to (i + 1, j). In order again to simplify calculations,
here we postulate that for the trailing motor the stepping rate is
independent of intermolecular interaction, uij( f) = u0. This is
based on observations for several cytoskeletal motor proteins
indicating that the velocity of the motor is barely increased by
the assisting forces.29,30 The trailing motor is experiencing the
assisting force from the leading motor. In addition, we take into
account the fact that the trailing motor cannot pass the leading

one. Therefore, if j − i = 1, the forward stepping of the trailing
motor is prohibited. It is also assumed that leading and trailing
motors alternate their steps. This means that the distance
between two motors can be only one or two sites, and other
conformations with larger distances between the motors are not
allowed; see Figure 1B.
In the two-motors-bound state (i, j), the unbinding of the

motor from the site j leads to a single-motor-bound state i. The
corresponding dissociation rate is given by

γ γ γ= = − −e eij
f F kd j i F

0
/

0
( 1)/d d

(3)

where γ0 is the dissociation rate in the absence of intermotor
tension and Fd is a characteristic force, which is called a
detachment force. It quantifies the strength of interaction
between the motor and the linear filament: the stronger the
interactions, the larger is Fd. In the single-motor-bound state i,
the system can move forward to the state i + 1 if the bound
motor steps with a rate u0, or it can return to the equilibrated
two-motors-bound state (|j − i| = l0) if the unbound motor
rebinds to the track with a rate π0; see Figure 1B. In addition, the
single-bound motor can completely dissociate from the linear
filament with a rate γ0 (Figure 1B).
To obtain the explicit description of the run length

distributions for the model of coupled two motors, as illustrated
in Figure 1, a theoretical approach that was successful for
describing the run length distributions of single motors is
adopted.15 We introduce a first-passage probability density
function Fij(t), which is defined as a probability for the system to
detach at some specific site n at time t if the initial state at time 0
is a two-motors-bound state (i, j). This meaning of the last state
n before the dissociation is the following. It is the last state of the
system before complete dissociation into the solution. It might
happen either when the trailing motor sits on the site n and the
leading motor is unbound or when the trailingmotor is unbound
and the leadingmotor sits on the site n + 1 (see Figure 1B). Then
the probability of having a run length l = nd can be calculated as

∫=
∞

P l F t t( ) ( )d
0

01 (4)

This indicates that the starting position for the system is the state
(0, 1), and the complex of two coupled motors will make n steps
before the complete dissociation from the track. We also
introduce two more additional first-passage probability density
functions, Li(t) and Ti(t). Li(t) represents the probability of the
motor complex to detach at the site n at time t if at time 0 the
trailing motor is unbound and the leading motor is bound at the
site i. Similarly, Ti(t) is defined as the probability of the motor
complex to detach at the site n at time t if at time 0 the leading
motor is unbound and the trailing motor is bound at the site i.
The temporal evolution of the first-passage probability density

functions is controlled by backward master equations:4,15

π γ π γ= + + − + ++ +
T t

t
u T t F t D t u T t

d ( )
d

( ) ( ) ( ) ( ) ( )i
i i i i i0 1 0 , 1 0 0 0 0

(5)

This equation describes the process in the kinetic scheme, which
is shown in the dashed box in Figure 1B, meaning that in order to
evolve from the state Ti(t) to the final dissociation state, the
system first needs to visit one the neighboring states of Ti(t), i.e.,
Ti+1(t), Fi,i+1, orDi(t).More explanations of the backwardmaster
equations and first-passage probabilities can be found in ref 4.
Similarly, we can write the temporal evolution for other states:
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π γ

π γ

= + +

− + +

+
+ +

+

L t
t

u L t F t D t

u L t

d ( )
d

( ) ( ) ( )

( ) ( )

i
i i i i

i

1
0 2 0 , 1 0

0 0 0 1 (6)

γ

γ

= + [ + ]

− [ + ]

+
+ + + +

+ + +

F t

t
u F t T t L t

u F t

d ( )

d
( ) ( ) ( )

2 ( )

i i
i i i i i i i i

i i i i i i

, 1
, 1 , 2 , 1 1

, 1 , 1 , 1 (7)

γ

γ

= + [ + ]

− [ + ]

+
+ + + +

+ +

F t

t
u F t T t L t

u F t

d ( )

d
( ) ( ) ( )

2 ( )

i i
i i i i i i

i i i i

, 2
0 1, 2 , 2 2

0 , 2 , 2 (8)

Here, we assumed that the leading and the trailing motor walk
alternately. This assumption will be justified in the following
sections. In these equations we also introduced auxiliary
functions Di(t), which reflect the boundary condition

l
moo
n
oo

δ
=

=

≠
D t

t i n

i n
( )

( )

0
i

(9)

Equations 5, 6, 7, and 8 can be solved by utilizing Laplace
transformations

Ù ∫=
∞

−F s F t t( ) ( )e dij ij
st

0 (10)

Ù ∫= =
∞

−X s X t t X L T( ) ( )e d ( , )i i
st

0 (11)

l
moo
noo

Ù =
=
≠

D s
i n
i n

( )
1
0i

(12)

Then the backward master equations are modified into a set of
algebraic equations:

ˆ Ùˆ
π γ

π γ

+ + +

= + +

∼

+ +

u s T s

u T s F s D s

( ) ( )

( ) ( ) ( )

i

i i i i

0 0 0

0 1 0 , 1 0 (13)

ˆ
Ùˆ ˆ

π γ

π γ

+ + +

= + +
+

+ +

u s L s

u L s F s D s

( ) ( )

( ) ( ) ( )

i

i i i i

0 0 0 1

0 2 0 , 1 0 (14)
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u
kd

F
s F s

u
kd

F
F s T s L s

1
2

2 ( )

1
2

( ) ( ) ( )

i i

i i i i

0
s

0 , 1

0
s

, 2 0 1
(15)

ˆ
ˆ

ˆ
γ

γ

[ + + ]

= + [ + ]∼
+

+ + +

u s F s

u F s T s L s

2 e ( )

( ) e ( ) ( )

kd F
i i

i i
kd F

i i

0 0
/

, 2

0 1, 2 0
/

2

d

d (16)

From these equations we obtain
ˆ Ùˆ π γ γ

π
=

+ + + − −∼
+

+F s
u s T s u T s D s

( )
( ) ( ) ( ) ( )

i i
i i i

, 1
0 0 0 0 1 0

0
(17)
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π

γ

π γ

− +
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A T s B T s CT s

s u
D s
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s u
D s
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1 2
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( 2 e )
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kd
F

i
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F

kd F i

2 1

0 0 2 0
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0 0
2
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0 0 0
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s s

d

(18)

where coefficients A, B, and C are given by

π γ
=

−

+ +

( )
A

u

s u

1

( 2 e )

kd
F

kd F

0
3

2

0 0 0
/
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γ γ

γ π π γ

γ π π γ

= + − + + +

+ − + + + { + + }

+ − { + + }

B u s u kd
F

s u

u kd
F

s u s u

u kd
F

s u

1
2

2 ( 2 e )

1
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( ) / ( 2 e )

1
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e / ( 2 e )

kd F

kd F

kd F kd F

0 0
s
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0
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s
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0 0 0
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(20)

and
Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑγ π γ

π

γ

γ
γ

=
+ − + + + +

−
−

+ +
−

( )

( )
C

s u s u

u

s u

1 2 ( )

1 e )

( 2 e )
2

kd
F

kd
F

kd F

kd F

0 2 0 0 0 0

0

0 0 2
/

0 0
/ 0

s

s

d

d (21)

When i ≠ n or i ≠ n − 1, using eq 12 one can easily show that
the expression in eq 18 can be simplified into

ˆˆ
− + =∼

+ +A T s B T s CT s( ) ( ) ( ) 0i i i2 1 (22)

This suggests that the solution for the probability density
function

∼T s( )i is of the form ∼∼T s x( )i
i, which after substituting

into eq 22 yields

− + =Ax Bx C 02 (23)

with two roots

=
± −

x
B B AC

A
( 4 )

21,2

2

(24)

Therefore, the general solution for
∼T s( )i can be written as

= +T s ax bx( )i
i i

1 2 (25)

where a and b are unknown coefficients, which can be
determined from boundary conditions at i = n and i = n − 1.
Applying these boundary conditions leads to

Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑγ γ

π
+ =

+ − +( )
ax bx

s u

C

1 2
n n

kd
F

1 2

0 0 2 0

0

s

(26)

γ

π γ
− + + + = −

−

+ +
− − ( )

B ax bx C ax bx
u

s u
( ) ( )

1

( 2 e )
n n n n

kd
F

kd F1 2 1
1

2
1 0 0

2
2

0 0 0
/ d

s

(27)

Now we can evaluate the run length distribution for two
coupled motor proteins by rewriting it in the following form

ı= =P l F s( ) ( 0)01 (28)
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Using eq 17 we derive
ÙÙ

π γ
π

=
+ + = − =

P l
u T s u T s

( )
( ) ( 0) ( 0)0 0 0 0 0 1

0 (29)

Substituting eqs 25, 26, and 27 into eq 29, we obtain the final
explicit expression for the run length distribution of the two-
motor system:

θ ϕ= − ′ + ′− −P l x x( ) ( ) ( )l d l d
1

/
2

/
(30)

In this equation, parameters θ, ϕ, x1′, and x2′ are positive
coefficients (θ, ϕ > 0; x1′ > x2′ > 1). They are found from the
following equations
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′ = = =
′ ± ′ − ′ ′

′
x x s

B B A C
A

( 0)
( 4 )

21,2 1,2

2

(36)

Equations 30−36 can now be utilized to calculate the run length
distribution of two coupled motor proteins.
Analyzing our model, we conclude that the collective

dynamics of two coupled molecular motors is determined by
seven parameters: the step size, the forward rate, the detachment
rate, the rebinding rate, the stall force, the detachment force, and
the spring constant between the two motor proteins. For
convenience, we collected all these parameters and their specific
values for kinesin motor proteins in Table 1.
Quantifying the Cooperativity for Two Motor Pro-

teins. It is clear that the run length distribution of the motor
protein assembly reflects the degree of cooperation between two
motors. Our theoretical analysis allows us to develop a
quantitative measure of such cooperativity for multiple-motor
proteins. For this purpose, we introduce a new function, which
describes the cumulative run length distribution

∑=‐

≥

∞

S l P i( ) ( )
i l

two motors

(37)

It has a physical meaning of the probability to have the run
length larger than the length l. From eq 30 we obtain

θ ϕ= −
− ′

′ +
− ′

′‐ − −S l
x

x
x

x( )
1 1/

( )
1 1/

( )l d l dtwo motors

1
1

/

2
2

/

(38)

Since x1′ > x2′ > 1, the first term in this equation will decay faster
than the second term. Therefore, when l is large (processive
motor proteins usually walk hundreds of steps before
dissociation),4 the cumulative run length distribution can be
approximated by the second term

ϕ ϕ≃
− ′

′ =
− ′

λ‐ − −S l
x

x
x

( )
1 1/

( )
1 1/

el d ltwo motors

2
2
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(39)

where λ2 = d/ ln[x2′]. This result suggests that Stwo−motors(l) can
be approximately described as an exponentially decaying
function with a characteristic length scale λ2. The same
arguments for eq 30 for large l suggest that P(l) ∼ (x2′)−l/d =
e−l/λ2. This means that λ2 is also the mean run length of the two-
motor complex, which is defined as ⟨l⟩ = ∫ 0

∞lP(l) dl under these
conditions.
To measure the cooperativity, the run length distributions for

two-motors system must be compared with the run length
distribution of a single motor at the same conditions. The
explicit form for the cumulative run length distribution for a
single motor can be derived from known results by setting the
backward rate to zero.15 We obtain the following expression in
our notations
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with a characteristic length
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, which also can

be shown as themean run length of the single motors. Therefore,
the ratio between the two cumulative run length distribution
functions can be represented by an exponential function
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with a new dimensionless parameter c is defined as

Table 1. Parameters Employed To Describe the Collective
Dynamics of Two Coupled Kinesinsa

d 8.2 nm
u0 121.95 s−1

γ0 1.0 s−1

π0 5.0 s−1

Fs 6.0 pN
Fd 3.0 pN
k 0.2 pN/nm

aWe followed a previous work to determine the values of some
parameters24 but also used two additional parameters: the forward
rate u0 is scaled to be 121.95 s

−1 so that the velocity of a single kinesin
V0 = u0d is fixed to 1.0 μm/s, and the spring constant k is set to be 0.2
pN/nm to follow the estimation from a previous experimental
study.38.
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λ λ
λ

=
−

c 2 1

1 (42)

It describes the relative increase in the mean run length for the
two-motor system in comparison with the single-motor case at
the same conditions. For this reason, the parameter c is a
convenient measure of the cooperativity. The larger c, the more
cooperative is the multimotor complex.

■ RESULTS

Application of Theoretical Analysis for Kinesin Motor
Proteins. Let us apply our theoretical approach to investigate
the run length distributions and the degree of cooperativity for
the system of two coupled kinesin-1 proteins that move along
microtubule filaments. These motors are currently the most
investigated, and the dynamic properties of this system are well
described.31 The run length distribution and the cumulative run
length distribution are calculated by using eqs 30 and 38,
respectively. All parameters needed for calculations are known,16

and they are presented in Table 1. In addition, to test our
theoretical predictions, we performed Monte Carlo computer
simulations of the system by employing the Gillespie algorithm
and comparing the results with those from the analytical
calculations. Recall that in the analytical calculations the
assumption that leading and trailing motors alternate was
made. However, this condition was removed for Monte Carlo
computer simulations. In computer simulations moving motors
were chosen randomly (not alternating), and the distance more
than two sites between proteins was allowed.
The results of theoretical calculations and computer

simulations are presented in Figure 2. First, one can see that
theoretical predictions perfectly agree with Monte Carlo

simulations, suggesting that our alternation assumption for
leading and trailing motors is reasonable, and it does not affect
the dynamic description of the system for the realistic set of
parameters given in Table 1. We predict also that the run length
distribution of the single kinesin is a monotonically decreasing
function of l (Figure 2A). This can be easily understood by
noting that the longer motor stays on the linear track, the larger
is the probability to dissociate. However, surprisingly, for the
two-motors case, our method predicts a nonmonotonic run
length distribution, as shown in Figure 2A. This can be explained
by the fact that the two-motor complex dissociates from the
filament only after both motors detach, but this does not happen
simultaneously and it will take some time. Thus, the probability
of very short runs for the two-motor complex should be low. The
probability of having run lengths larger than l ≃ 1 μm is always
larger for two-motor complexes (see Figure 2A).
Our results show that two coupled kinesins can significantly

improve the transport efficiency compared to a single kinesin.
The mean value of the run length ⟨l⟩ has a twofold increase from
1.0 μm for a single kinesin while it is equal to 2.0 μm for two
coupled kinesins. This result is expected based on the fact that
the probability of dissociating of two motors is significantly
lower than that for the single-motor case. However, we
emphasize here that the advantage for the cellular cargo to be
moved by two motors versus a single motor includes not only a
moderate increase in the mean run length but also a significant
improvement for the long distances. For example, for a single
kinesin the probability of having a run length larger than 6 μm is
only 0.2%, while for the two coupled kinesins this probability
gains a 20-fold increase to 4.9% (see Figure 2B). In fact, as
shown in eq 41, the ratio between the cumulative run length
distributions of the two coupled kinesins and the single kinesin is
not a constant, and it increases exponentially with the run length.
Furthermore, to quantify the cooperativity of two coupled

kinesin motor proteins, we estimated the dimensionless
parameter c. For the set of parameters given in Table 1, it is
found that c ≃ 0.95. This suggests that two coupled kinesin
motors cooperate strongly enough, at least, from the point of
view of increasing run lengths. Note, however, that the level of
cooperativity might be different for other dynamics properties
such as velocities and diffusion coefficients.16 In addition, in our
model the motor proteins are close to each in the two-motor
bound conformations due to alternation assumption, and this
might also artificially increase the degree of cooperativity.16

Factors Influencing the Degree of Cooperativity
between Two Coupled Motor Proteins. Our theoretical
method allows us to evaluate factors that influence the degree of
cooperativity for two coupled motor proteins. More specifically,
using the parameters for kinesin motor proteins, we analyze how
changing the stepping rates, the motor dissociation equilibrium
constants, and the spring constants affects the cooperativity
parameter c, and the results are presented in Figure 3. First,
stepping rates are varied from 30 to 200 nm/s.While the effect of
increasing the stepping rate on the run length distribution is
significant by making them less sharp (Figure 3A), the
cooperativity parameter c is barely affected: Figure 3B shows
the increase in c of only 0.01 while the stepping rate increases∼7
times.
At the same time, the dissociation properties of motor

proteins influence the degree of cooperativity much stronger, as
shown in Figures 3C and 3D. We define an equilibrium
dissociation constant for a single-motor protein as KD = γ0/π0,
which describes the tendency of the molecule to dissociate from

Figure 2. (A) Run length distribution of two coupled kinesins versus a
single kinesin. (B) Cumulative run length distribution of two coupled
kinesins versus a single kinesin. S(l) represents the probability to have a
run length of l or larger. Solid lines represent analytic calculation while
open circles represent results from Monte Carlo simulations by using
the Gillespie algorithm. Error bars are smaller than the circle size. The
parameters are shown in Table 1.
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the filament. The larger KD, the larger is the probability for the
motor to dissociate from the linear track. Increasing the
dissociation constant makes the run length distributions sharper
with decreasing mean run length: see Figure 3C. But the degree
of cooperativity drops sharply (Figure 3D). This is because the
time intervals after the first motor dissociation and before the
second motor dissociation are getting smaller, decreasing the
effect of the second motor on the run lengths.
The strength of intermolecular interactions also has a

significant effect on the degree of cooperativity, as illustrated
in Figures 3E and 3F. Increasing the spring constant makes these
interactions stronger, and the run length distributions become
more narrow; see Figure 3E. But this decreases the cooperativity
parameter c. This observation can be explained by noting that
the dissociation rate increases for larger spring constants (see eq
3), while the stepping rate decreases due to stronger
intermolecular tension. Both of these factors lead to lower
cooperativity in the system of two coupled motor proteins. This
also agrees with predictions from a previous study that suggests
that increasing the coupling will lead to run length reduction.26

Other important parameters that influence the dynamics of
single-motor proteins are the stall force Fs, which specifies the
external force that is needed to stop the forward motion of the
motor, and the detachment force Fd, which specifies the
characteristic force needed to detach the motor from the
filament. Our analytical framework allows us to evaluate the
effect of these quantities on the degree of cooperativity. The
results are presented in Figure 4. Two qualitatively different

dynamic behaviors are observed. For large Fs and Fd, strong
cooperativity is predicted (yellow-orange regions in Figure 4). In
this case, the intermolecular interactions weakly influence the
forward stepping motion, and the dissociations are rare. In the
limit when the stalling and/or the dissociation forces are weak,
the cooperativity is low (blue-green regions in Figure 4). In this
situation, the motor cannot step forward (Fs is small) or it
dissociates too quickly (Fd is small), leading to the decreased
level of cooperativity.

Figure 3. Cooperativity between two coupled motor proteins. (A) Run length distribution of two motors with different forward stepping rates. (B) c,
defined as the relative increase in the mean run length for the two coupled motors versus the single motor case at the same condition, as a function of
the forward stepping rate. (C) Run length distribution of two motors with different dissociation constants. (D) c as a function of the dissociation
constant. (E) Run length distribution of two motors with different elastic spring constant between the two motors. (F) c as a function of the elastic
spring constant between the two motors. The parameters are shown in Table 1.

Figure 4. Cooperativity between two coupled motor proteins,
quantified by c, defined as the relative increase in the mean run length
for the two coupled motors versus the single-motor case at the same
condition, as a function of the stalling force Fs and detachment force Fd
(pN).
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Stall forces and dissociation forces are known for different
motor proteins, and it is interesting then to use our analysis to
determine the degree of cooperativity for each of the system.We
checked four different motors: kinesin-1 (Fs = 6pN24 and Fd =
3pN24), myosin V (Fs = 2pN

32 and Fd = 4pN
33), myosin VI (Fs =

2pN34 and Fd = 2.6pN33), and dynein (Fs = 1pN35 and Fd =
1pN24). It is found that kinesins exhibit a high cooperativity
(large c), while dyneins have a low cooperativity (small c); see
Figure 4. Myosins V and myosins VI motor proteins show
intermediate values of the parameter c. This suggests that
processive motor proteins like kinesins might work together to
increase their transport efficiency. In contrast, dyneins cannot
make their cellular transport very efficient even by recruiting
several copies of molecular motors. Interestingly, this might be
the reason why in cells dyneins always function with the assisting
protein dynactin. This increases the effective Fd for the dynein−
dynactin complex, and then coupling several motor protein
complexes together will lead to more efficient cellular trans-
port,36 as predicted in Figure 4.

■ CONCLUSIONS
We developed a new theoretical framework to evaluate run
length distributions of coupled molecular motors that move
along linear filaments. Our approach is based on first-passage
explicit calculations, which are also tested by extensive Monte
Carlo computer simulations. Specifically, we investigated
dynamic properties of two coupled motor proteins. Our
calculations show that the two coupled motors have a
surprisingly nonmonotonic run length distribution as a function
of the length, which differs from the monotonically decaying
function for the single-motor protein molecules. These
observations are explained by noting that two motors cannot
simultaneously dissociate from the filament, leading to a more
complex dynamic behavior for coupled motor protein systems.
We also found that the transport efficiency of two interacting
molecular motors is much higher in comparison with the single
motors. The degree of cooperativity with respect to increasing
run lengths is introduced and quantitatively described. The
application of our method for two coupled kinesin motors
proteins shows that these motors possess a strong ability to
cooperate, although this might be the result of the assumption of
the theoretical model that considers two-motor-bound con-
formations where motors are close to each other. Using our
quantitative approach, the factors that affect the cooperativity
are explicitly analyzed. It is shown that dissociation constants,
strength of interactions, stall forces, and detachment forces
strongly influence the degree of cooperativity, while the effect of
stepping rates is minimal. Finally, our framework is utilized to
evaluate the level of cooperativity with respect to increasing run
lengths for different motor protein systems.
Although our theoretical method is able to clarify several

aspects of the collective dynamics of motor proteins, it is
important to critically evaluate our findings. There are several
approximations which should limit the applicability of this
approach. We do not take into account the backward transition
rates for motor proteins, which violates the detailed balance
condition. However, for most of motor proteins, the backward
transition rates are small in the absence of external loads.
Therefore, it is a safe approximation to study only the dynamical
properties of motor proteins. But one should notice that under
external loads some of these rates might become quite large.
Thus, it is also thermodynamically inconsistent to neglect them.4

Those effects will be considered in the future investigations. The

unrealistic linear force/velocity relation is assumed for the
stepping transition, while the susceptibility of motor velocities to
the external forces, which depends on the functional form of the
force−velocity relation, influences the collective dynamic
behavior of motor proteins.16,37 Another strong assumption is
the alternation of the motion by leading and trailing motor
proteins, which limits the number of possible molecular
conformations. Our method also does not take into account
the existence of intermediate chemical states and the finite
length of linear filaments. However, despite these limitations, we
believe that the method clarifies several physical−chemical
aspects of the collective behavior of motor proteins, as indicated
by our Monte Carlo computer simulations. It also provides a
quantitative measure of the degree of cooperation and gives
experimentally testable predictions.
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