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ABSTRACT: Generating electrical current from mechanically forced variation
of the contact area of electrode/electrolyte interface underpins one of the
scenarios of harvesting electrical current from walking. We develop here theory
of an electrical shoe with a porous sole with an account of both convection of
the liquid electrolyte under pressure and ion migration with transmission-line-
type charging of electrical double layer at the pore walls. We show here that ion
transport limitations can dramatically reduce the generated current and power
density. The developed theory describes the time dependence of the generated
current and reveals its dependence on the main operation parameters, the
amplitudes of oscillating pressure and frequency, in relation to the system
parameters.

■ INTRODUCTION

There is currently great interest in electrical current generation
from mechanical motion of human individuals based on the
principle of reverse electroactuation. Where direct electro-
actuation converts changing electric potential into mechanical
motion,1,2 reverse electroactuation does the opposite, usually in
the form of generating transient currents, with repeated
oscillating motions producing ac current.3 The task here is to
produce the maximum power density from the gadget at
minimal degradation, i.e., maximal longevity of the device, and
at low cost.
There may be different principles of reverse electroactuation

that we will not review here. The one we will focus on is based
on mechanical changes of the electrical capacitance of the
system. When the electrical capacitance is kept under constant
voltage while connected to a battery, a change in this
capacitance will cause a transient current in the network,
charging or discharging the capacitor. A principle such as this
can also be used in tactile sensing.4 The amount of current
flowing in the system will be proportional to the change in
capacitance, which in turn scales with its maximal value. Thus,
manipulating the capacitance of a dielectric capacitor will
produce much smaller currents than those using the electro-
chemical double-layer capacitors. Dielectric capacitance is
inversely proportional to the thickness between the plates,
the smallest value of which is usually not less than 100 nm,
whereas electrochemical double layer capacitance is inversely
proportional to the Gouy length, which depending on the
concentration of electrolyte and voltage typically lies in the
range of 1−10 nm.

The principle of capacitive reverse electroactuation using
electrolytes has been patented by Krupenkin5 and developed in
the pioneering work of his group.6,7 His devices are based on
the compression of nonwetting electrolytic droplet(s) confined
between two electrodes: When compressed, the two electrodes
move closer together, and the droplet spreads and becomes
wider, increasing its contact area with the electrodes, thereby
increasing the capacitance. When the compression is removed,
the droplets shrink back, and the contact area decreases
reducing the capacitance. Since changing the capacitance at a
constant voltage causes transient current, the alternation of
compression and decompression will generate the alternating
current patterns, and this is what Krupenkin’s group
demonstrated experimentally.
In a previous work,8 we developed a slightly different

scenario of realization of the same idea. Instead of considering a
flat capacitor system, we considered a porous electrode,
ordinarily nonwetted with the electrolytic solution either due
to its natural solvo-/iono-phobicity or due to the Cassie−Baxter
condition9 of restraining of liquid penetration into a porous
medium. Under sufficient external pressure, e.g., that emerging
under a stepping foot, the liquid will penetrate the pores and
the contact area between the electrolytic solution and the
electrode will increase, thereby increasing the double layer
capacitance. If the electrode is under a constant positive bias,
then the electrical double layer will be rich in anions; the
spreading of such a layer over the interior will produce a flow of
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electrons away from the electrode to establish new charge
equilibrium. As the electrolytic liquid recedes from the pore, the
capacitance will diminish and cause a reverse flow of electrons.
Under a set of simplifying assumptions, a fully analytical

theory was developed to describe the operation of such a
system. Among the assumptions made, the most important
ones were as follows: (1) The flow of the liquid under the
varying pressure obeys the Washburn equation. (2) There is no
capillary hysteresis. (3) When the liquid flows into the pore, the
double layer momentarily forms at the contact surface
(adiabatic approximation).
A full, detailed description of the rheology of the flow into

narrow capillaries is a serious task, which must be further
explored. However, for pores of 1 μm size, the Washburn
equation can be a good semiphenomenological approxima-
tion.10−13 If the pore walls are ideally smooth, then hysteresis
may not be essential. The role of ion transport limitations is the
first thing to understand when going beyond the simple theory
of the previous work.8 Indeed, will the double layer charging
take place momentarily with the liquid flow? If not, what will be
the effect on the generated current and the average power?
The present work is intended to answer these questions by

investigating a model of ion transport into the liquid that moves
inside the pore. We have chosen the simplest possible model
that integrates the transmission line theory of ion transport into
the Washburn-like description of a pressure-induced liquid
flow. This simplification allows us to develop a fully analytical
theory, which will recover the result of the previous work as
particular limiting case for very fast migration of ions. The
resulting formulas for the time-dependent current and the
average power will allow us to understand what is needed to
minimize the ion migration limitations and the characteristic
time related to them.
Ion transport effects in “sister problems”, such capacitive

ionization or more generally capacitive salinity gradient energy
systems, have been intensively studied in a number of works,
see e.g., Biesheuvel et al.,14 some papers in this journal,14−17

and a review article,18 but to our knowledge, they have not been
explored in porous reverse electroactuators.

■ MODEL AND BASIC EQUATIONS

For this model, we will investigate charging of a pore using the
transmission line theory in order to account for the
redistribution of ions in an electrolyte not being instantaneous
when following the moving liquid. We will develop the simplest
version of the theory, taking into consideration that the
penetration depth of the liquid into the pore, L(t), changes
with time. For this quantity we will use the form derived in the
previous work,8 obtained for a periodical change of external
pressure and the use of Washburn equation, which describes
how the liquid moves inside the pore under a variable pressure:

ω
ω π ω= − ≥L t

AP
t t( )

2
(1 sin( ) , /20

(1)

Here P0 is the amplitude and ω is the frequency of the
oscillating external pressure, e.g., emerging from walking, and t
is the time over which the charging takes place. The parameter
A (m2 Pa−1 s−1) is defined as

η
= +

A
r kr4

8

2

(2)

where r is the radius of the pore, k is a dimensional slip
coefficient (which would have been zero for complete wetting
conditions but is close to the pore radius for the nonwetting
case), and η is the liquid viscosity.19

The expression for the evolution of charge in the pore due to
the moving liquid and migration of counterions and co-ions in
the flow of the liquid is obtained by incorporation of eq 1 into
the transmission line equation. The transmission line theory
describes the propagation of electrical current in the pore.
Ideally, it works when the pore size is much larger than the
thickness of the equilibrium electrical double layers at the pore
walls so that one can speak about the ion transport in the “bulk”
of the pore charging the double layer capacitor at the walls.
Eventually, it will work even for narrow pores, but only if the
electrical double layers on opposite sides of the pore do not
overlap.
In the transmission line theory, the ionic current along the

pore axis is not conserved as it gets converted into the
capacitor’s charge along the surface; in this respect, the
electrode surface works as a “sink” of capacitive current. The
transmission line model has been explored and exploited from
the beginning of the 20th century (for review, see one of the
latest papers utilizing it).14 Similar types of equations have
emerged and been studied, not only in electrical engineering
and electrochemistry but also in one-dimensional heat
transfer.20 In the capacitive charging of a capillary of fixed
length L completely filled with an electrolyte taking place after
a voltage jump u ̅, the equations of the transmission line theory
give the following formula for the evolution of the net charge in
the pore (for derivation, see Appendix A).

∑
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Here, u ̅ is the potential difference between the electrode (pore
surface) and the bulk electrolyte, C0 is the double layer
capacitance per unit surface area of the pore (considered to be
voltage independent), lp is the average pore perimeter, and 1/l
is the specific surface area of the pore, i.e., 1/l = S/V where S is
the surface area of the pore and V is the volume of the pore.
For cylindrical pores, we have lp = 2πr and l = r/2; therefore, lp
= 4πl. This relationship is used throughout this work when
calculating the values of parameters used in the graphs.
The following combination of parameters determines here

the quantity of the dimensionality of time.

τ =
Σ

C l0
(4)

where ∑ is the ionic conductivity of the electrolytic solution
that we use to fill the pore. This time increases with poorer
conductivity of the electrolyte because the ions will be
migrating slower to reach the areas they need to charge and
as the double layer capacitance becomes larger because for a
given voltage more charge will need to be transported to those
areas. However, in a transmission line system the relaxation
time is much longer than τ; it is, actually, equal to

τ
π

τ= L
l

1
p 2

2

2 (5)

This time increases with the length of the filled pore, as L2, and
decreases with increasing pore cross section.
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Note that eq 3 is valid under the assumption that C0 does not
depend on applied voltage. This is generally never the case in
electrochemistry, but this approximation allows us to obtain
analytical results; furthermore, the effect of voltage dependence
often averages out in the whole sample when considering pore
size distribution.21

In our case, however, we are not considering a voltage jump.
On the contrary, the electrode potential relative to the bulk
electrolyte (reference electrode) is kept constant, and it is now
the depth of the liquid penetration into the pore which changes.
However, all the boundary conditions are the same. If we
assume that the speed of migration of ions is faster than the
convection of the liquid, then we can suggest the next level of
the “adiabatic” approximation by substitution of eq 1 for L(t)
into the transmission line equation (eq 3). By using this crude
approximation, we decouple the problems of convection and
migration but incorporate them in one process. We critically
analyze it in the end of this section. Once adopting it, we obtain
a formula for the evolution of the net charge in the pore over
one period of oscillation of external pressure
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This equation describes the charge within each period. At the
onset point of each period there is no liquid in the pore, L = 0,
and this is the same at the end of the period. One of the main
assumptions here is that when the liquid returns from the pore
to the bulk there is no memory in the system: counterions do
not crowd up at the entrance of the pore. Thus, hereafter, we
will be considering only one period of pressure oscillation,
assuming that once the electrolyte has been pushed out of the
pore to its original position there will be no “memory” of the
previous period. The electrolyte will act in exactly the same way
every single time it enters the pore.
Looking at eq 6, we see that the characteristic time to charge

the pore over the maximum penetration length for a given
amplitude of pressure is not τ, as we have already commented
above, but something close to

τ
π ω

τ=
AP
l

8
p

0
2 2 (7)

How large could this time be? Taking Σ = 0.14 S/m for 0.1
molar aqueous solution of KCl, l = 5 × 10−7 m, and C0 = 0.1 F/
m2, we get τ = 3.6 × 10−7 s. With A = 10−10 m2 Pa−1 s−1 and P0
= 105 Pa, this gives τp = 1.9 s, which is longer than the 1 s
period of oscillation. For 1 M electrolyte, the conductivity will
be 10 times larger, and τ and τp will be 10 times shorter. In that
case, our adiabatic approximation would be rigorous, but then
the effect of ion migration limitations will be small. However,
there is in fact no simple relaxation time behavior in eq 6,
because of the factor 1 − sin(ωt) in the denominator of the
exponent. At certain sections of a period when sin(ωt) is close
to 1, the response is much faster. Furthermore, due to the series
structure of the result, the time dependence at small times is
not exponential but rather proportional to √t (c.f. Appendix
A). Thus, extending the theory to the case when τp is on the
order of the period of pressure oscillation has a character of

extrapolation, which as we will see below seems to give
physically reasonable results. With these reservations in mind,
let us now explore the consequences of eq 6.

■ RESULTS AND DISCUSSION
Charge Evolution. In Figure 1, using a set of estimated

realistic values for the parameters listed in the caption, we show

the evolution of charge within one pore over a 1 s period of
pressure oscillation for indicated values of the intrinsic
migration times.
There are three regimes in the dynamics of the charge

accumulation as shown in Figure 1. The amount of charge
initially increases linearly, the accumulation rate then changes
to produce a shallower gradient, and finally it starts to linearly
decrease. From eq 6, it can be shown that for times close to

π/2ω we have in the first regime ω≈ − π
ω( )Q t C l AP t( ) 0 p 0 2

,

wh i l e i n t h e t h i r d r e g ime c l o s e r t o 5π/2ω ,

ω≈ −π
ω( )Q t C l AP t( ) 0 p 0

5
2

. The charge evolution in the

middle regime is different and is already affected by the
migration time.
This behavior is nontrivial, but is still easy to rationalize. At

the beginning and the end of the period, the charging-
discharging dynamics is independent of the ion migration
because in these cases the rate-limiting is the motion of the
liquid as a whole. It is only in the middle region, when the ion
migration cannot follow the liquid filling or leaving the pore,
that the diffusion of ions becomes a rate-limiting step.
Therefore, the faster the ion migration, the shorter the duration
of this intermediate regime. In other words, as the liquid enters
the pore, the ions immediately follow it because the speed of
the liquid motion in the pore is initially low, as well as the
penetration depth being small. Later, however, the speed of

Figure 1. Charge accumulated in a solvophobic pore over a period of
application of periodically varying external pressure: effect of ion
transport limitations. Different curves correspond to different values of
the intrinsic migration times τ. The slower the characteristic migration
time τ (see text), the less charge will have time to accumulate in the
pore. The values for the parameters used in this plot are u ̅ = 0.3 V, C0
= 0.1 F m−2, l = 0.5 · 10−6 m, A = 10−10 m2 Pa−1 s−1, P0 = 105 Pa, and
ω = 2π s−1. The effect of the characteristic migration time on charge
accumulation in the pore is investigated here over three different
orders of magnitude.
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pore filling accelerates, and the depth increases. At the central
point of the period (t = π

ω
3
2
), the penetration depth reaches its

maximum and begins to return to the opening. The peak of the
graph is the point at which the flow of counterions meets the
returning liquid front, and the liquid and the ions together
return to the bulk liquid outside the pore.
The migration time, τ, is short and, depending on the

conductivity of the electrolyte and the double layer capacitance
per unit surface area, lies in the range of 10−7−10−5 s. The
characteristic time to charge the pore, τp, over the maximum
penetration length, however, is much longer. For a set of typical
parameter values, l = 0.5 × 10−6 m, A = 10−10 m2 Pa−1 s−1, P0 =
105 Pa, ω = 2π s−1, and τ = 10−6 s, eq 7 gives us τp = 1.29 s.
Such a value is close to the pressure oscillation period (1 s);
hence, we should see a delay in “charge delivery” into the pore
sensitive to the values of parameters − the exact value of τ in
the first place. By changing the order of magnitude of τ, we can
see what will be the effect of the delayed migration of ions.
When comparing the characteristic time, τp, for the three
different values of τ used in the plots above, we obtain τp =
0.129, 1.29, and 12.9 s when τ = 10−7, 10−6, and 10−5 s,
respectively. From these values and applying them to eq 6, we
can deduce that as the characteristic time, τ, becomes quicker,
the exponential term vanishes much faster, bringing the result
much closer to that of the adiabatic approximation with no lag
in the migration current. This makes sense, as the quicker the
ions migrate and form the double layer inside the pore, the
faster the current will be generated and the smaller the lag in
the current.
Generated Current. The net current of ions is just time

derivative of the charge

=J t
Q t

t
( )

d ( )
d (8)

It will be equal and opposite in sign to the electronic current in
the electrode to meet the ions, but since the current in electrical
engineering is defined as the flow of positive charges, eq 2 gives
us the current in the network. Note again that the ion current is
not constant along the pore; it “sinks”, charging the pore walls.
By definition the ionic current must be zero at the front of the
liquid moving in the pore, as no ion can cross this front.
Differentiation of eq 4 gives the time dependence of the net
ionic current inside a single pore
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with all parameters having the same definition as those in eq 6.
Figure 2 plots this current for three values of the intrinsic

migration time, τ, the same as those used in the plots for the
charge evolution in Figure 1, plus one more curve, plotted for a

very short migration time (unphysically short), to check
whether we could recover the fully adiabatic regime limit.8

Similar to the charge dynamics, there are three regimes for the
current. At the beginning of the period, the current is constant
and is equal to ω=J C l AP0 p 0 , while at the end of the period
it has the same magnitude but opposite sign.
As we see from Figure 2, changing the intrinsic migration

time τ will change the way the charge evolves and therefore
change the amount of current the electrode will produce over
one period. As τ increases, the current is generated only at the
beginning and the end of the period, remaining very small in
the middle. As τ decreases, current generation is more even; in
this process, ions with almost no delay charge the length of the
pore penetrated by the liquid. When the order of magnitude of
τ becomes as small as 10−8, the plot does not show any delay,
essentially reproducing the result obtained in the previous work
under the adiabatic regime.8

Power. Calculation of the power that an electromechanical
capacitive current generator can produce is a special task with
requires consideration of particular circuit which may generally
contain resistive, inductive, and capacitive elements. The
combination of these elements will affect the value and time
dependence of the generated current, as well as the power
pumped into the load. We consider nothing of the kind in this
paper, but in Appendix C, we investigate the conditions under
which we can calculate the capacitively generated current
neglecting the load. Thus, when speaking below about the
“power” we will estimate the maximum amount of electrical
energy that our variable capacitor can produce over half-a-
period of pressure oscillation in a “short-cut” circuit. Hereafter,
we will designate it as “short-circuit” power density, and when
the adjective is omitted for brevity, we still mean such quantity.
It benchmarks the general capability of device, the implemen-
tation of which must generally be studied with the

Figure 2. Absolute current generated in a single solvophobic pore over
a period of application of periodically varying external pressure. As in
Figure 1, the slower the intrinsic migration time τ (see the text), the
less time the charge has to accumulate in the pore, so less current will
be generated per period. Therefore, for a slower characteristic time, the
plot produced a more prominent lag in the current. The values for the
parameters used in this plot are the same as those used in Figure 1.
The effect of the characteristic migration time on current generation in
the pore is investigated here over four different orders of magnitude,
recovering the result of the previous work8 only when the migration
time reached is unphysically small (10−8 s).
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consideration of the full circuit (for details, see Appendix C).
For such a defined quantity, we can obtain a simple analytical
expression.
This can be calculated as

= ⟨ ⟩ ̅W J u (10)

where the average current density J is defined as characteristic
current per unit surface are of the sole of the shoe, averaged
over a half of a period (because two halves of the period are
symmetric).
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Here, ε is the porosity of the sole of the shoe and r is the radius
of a single pore (we mean the average radius). Recalling eq 8,
we can remove the integral in eq 11 to obtain
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Substituting eq 6 into eq 12 and taking into account that
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where the function f(x) is defined as
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Without the second term in the brackets, eq 13 would give
the same result as in the fully adiabatic theory of the previous
work8 (see eq 17 of ref 8, with r there replaced by 2l, with
account to the correction to this equation).22 Thus, it is the f
term that reduces the power density. Of course, when τ → 0,
then x → ∞ and f → 0, and the result of the fully adiabatic
theory8,22 is recovered. Otherwise, the f term may comprise a
substantial reduction of the power density. Since f(x) is a
universal function and not dependent on any other parameters,
it is worth displaying (Figure 3).

For a typical set of parameters, l = 0.5 × 10−6 m, A = 10−10

m2 Pa− 1 s− 1 , P 0 = 105 Pa , τ = 10− 6 s , and

= = ×
τ

−x 9.375 10l
AP
3

8
32

0
, eq 14 gives f = 0.806 so that due

to the lag in the “ion response” more than 80% of the power
would be lost compared to the fully adiabatic “ideal world”.8,22

However, if the migration time is 1 order of magnitude shorter,
then the same estimate will give f = 0.392, i.e., only 39.2% of
power is lost due to ion migration limitations. On the contrary,
if migration time is estimated to be 10 times longer, f = 0.939,
the system will function at only 6% of its ideal efficiency. We
show the graph of the power (Figure 4), for the same set of
parameters, showing its dependence on τ.

In accordance with the above-discussed analysis of the f
factor, Figure 4 shows that there is a point around τ = 10−7

where power density increases at a slower rate with decrease of
the rate of migration. This is because for the taken set of
parameters the ions are reaching the value of τ where they have
time to reach even the peripheral parts of the liquid in the pore
while the liquid moves there; the plot looks as though it will
reach a saturation point if the migration time is decreased even
further. We can see, however, that the general trend is that as
the migration time increases the average current output over
the soles decreases and so does the power density.

Changing the Period of Oscillation at Constant
Migration Time. So far we have kept all parameters constant
aside from the characteristic migration time, τ. Now we will
investigate the effects of changing the period of walking, ω,
while keeping the migration time at a constant value of 10−6 s.
Realistically, a rate of 1 step per second is a slow walk, so we
will consider what happens to the generated power density
when we increase the speed, or decrease the length of the
period, to 2 steps per second; ω = 4π s−1 (a fast walk); and 3
steps per second; ω = 6π s−1 (a fast run). In in Figures 5 and 6,Figure 3. Graph of f function defined by eq 12.

Figure 4. Generated power for the charging of hydrophobic pores,
changing the intrinsic migration time of ions in the electrolyte, plotted
using eq 13. At very short ion migration times, the generated power
density increases slowly with decreasing migration time. However, as
the migration time becomes longer, the power density decreases much
faster, tending toward a much lower power density. The parameters
used in this plot are the same as those in Figure 1, with ε = 0.5. The
characteristic migration time, τ, is changed logarithmically to view the
full effect on the power density.
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respectively, we show the effect that the frequency has on the
evolution of charge in the pore and the generated current

In Figure 5, we can see that changing the frequency does not
change the shape of the plot qualitatively, but it affects it
quantitatively. Of course, the period of a single step, T,
decreases as frequency, ω, increases: = π

ω
T 2 . Thus, as the

period decreases, the plots become narrower. The initial
gradients increase, which indicates that speed of charge
generation increases with decreasing time period, even if the

overall amount of charge generated decreases. This is due to
the speed of the oscillating pressure increasing with decreasing
period so that the liquid enters the pore much faster, but it
doesn’t have enough time to go deep into the pore. To recharge
the double layers, the ions have to migrate shorter distances,
and the lag effect is less felt. This is supported by the trends in
the current shown in Figure 6. As the period gets shorter, the
initial current generated at the pore becomes larger.
The combined effect of the frequency and period on the

power density generated in the pore is simple. Following eq 13,
it scales ∝√ω, in the same way as it does in the fully adiabatic
case,8,22 but due to the migration delay, the proportionality
factor is smaller. However, again, we can see that the faster you
walk the greater the amount of the generated power. This trend
is shown in Figure 7.

Decreasing the size of the pores allows a larger amount of
current to be generated due to the increase in the number of
pores on the sole per unit cross-sectional area; therefore, the
system will operate with larger overall surface area available for
charging. Charging of all pores will proceed in “parallel” so that
that the increase of the area in this way will not slow down
charging.

Pressure Dependence. Here the f term brings a dramatic
effect. The behavior of the power with the increase of pressure
is determined by the behavior of the function 1 − f(x). Indeed,
there is an asymptotic law for this function: As x → 0, 1 − f(x)

≈ 2√x, but the factor in front of 1 − f(x) in eq 13 is ∝
x

1 .

Thus, as x → 0, ≈− 2f x
x

1 ( )
. With increasing P0, x → 0, and the

power increases. However, it then saturates to a constant value.
This value is given by a simple formula:

ε ω
τ

= ̅W C0.78 U (high pressure limit)0
2

(15)

Of course when pressure goes to zero, f(x) ≈ 0, and 1 − f(x)→
1. Thus

Figure 5. Charge accumulated in a solvophobic pore over one period
of application of a periodically varying external pressure. The plot
shows the effect of frequency of the applied pressure on the charge
accumulated in the pore. As the frequency increases from ω = 2π s−1

to ω = 6π s−1, the total amount of charge generated at the pore
decreases. This is because as the frequency increases the liquid spends
less time in the pore, so the ions have less time to form the double
layer inside the pore. The parameters have the same values of those
used to plot Figure 1, aside from τ being fixed at 10−6 s and ω being
set as shown in the inset.

Figure 6. Absolute current generated in a single solvophobic pore over
one period of application of periodically varying external pressure. This
plot shows the effect of the frequency of the applied pressure on the
generated current. The parameters used are the same as those in
Figure 1, aside from τ being fixed at 10−6 s and different values of ω
being set between 2π s−1 and 6π s−1, as shown in the inset.

Figure 7. Short-circuit power density generated with changing
frequency of oscillating pressure, shown for three different migration
times. The power generated increases with the square root of
frequency, described by the simple power law of eq 13 As migration
time decreases, the power increases. The parameters used in this plot
are the same as those in Figure 1, aside from ω now continuously
varying between 2π and 6π s−1 and ε = 0.5.
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ε
π

ω= ̅W
l

C AP
2

U (low pressure behaviour)0
2

0 (16)

(which is the result of the previous work8 with account for
correction of the numerical coefficient).22

Thus, the power increases initially as the square root of
pressure amplitude and then saturates at the maximally possible
limiting value. This limitation holds because increasing pressure
amplitude decreases the time that liquid spends in the pore, and
there is no time for redistribution of ions to take place. Figure 8

shows the full graph of the pressure dependence. For typical
estimates that we used in this paper, a walking individual is
already at the plateau in terms of the pressure dependence due
to migration limitations. However, a child will produce less than
that (for them, the migration limitations will be less important).
Our theoretical calculations have been done for the case

when the pressure changes periodically as ∼sin(ωt), but the
analysis can be extended to more general variations in pressure.
Such calculations for the pulsed staircase variations are
presented in Appendix B. It is found that all qualitative results
obtained above are confirmed, and only the amplitude of
properties are slightly modified.

■ CONCLUDING REMARKS
Let us summarize what we have done and learned, what we
think we know, and what we yet do not know. Using a simple
combination of the Washburn equation and the transmission
line theory, we obtained a close form formulas describing the
operation of a machine based on pressing electrolytic liquid
into pores of a polarized electrode.
We would have had to develop a more complicated theory,

involving the Nernst−Planck equation,23 if the drag coefficients
for cations and anions, i.e., how they are drawn in a forced
convective flow, were different. If however they are roughly the
same, then convection itself will not affect the flow of net
charge. This allowed us to consider the charging migration
current as being driven exclusively by the electrical potential

and independent of convection but proceeding in a liquid
column of varying length. We considered the principle issues of
this process and thus studied effects in one single pore,
extending it later on a monodisperse system of parallel pores.
Integration of our findings into the theory of electrodes with

pore size distribution and complex shapes of the pores was
beyond our goals; such investigation may have multifarious
aspects and will be the subject of future studies. However,
modern technology can build at least laboratory prototypes in
which the electrode may have a system of monodisperse
cylindrical pores with an ideal internal surface so that the results
of our findings can be tested experimentally as they are.
Using the chosen theoretical model, we have found that the

ion migration limitations may have a serious impact on
generated power. It affects the slope of the frequency
dependence of generated power, which as a function of
frequency should obey the ω1/2 law. It levels off its pressure
dependence; with the increase of the amplitude of the
oscillating pressure, the power first increases square root wise,
∝P01/2, but then reaches saturation. The latter takes place only
when the ion migration limitations are taken into account.
We should recall that the simple combination of two theories

seems physically justified when the characteristic time τp (eq 7)
is not much greater than the oscillation period T = 2π/ω.
Eventually with the increase of frequency, τp, which is ∝1/ω,
decreases with the same rate; thus, the ω1/2 law is, perhaps, not
limited by the approximations of the theory.
We are less sure about the pressure dependence law. If the

criterion is indeed τ <
π ω

π
ω

AP
l

2 20
2 2 , i.e., τ < π l

AP4

3 2

0
, then we are

already at the border of applicability of the theory. Our “typical

estimate” suggests that τ < ≈ ×π
×

−−

− 3 10 s10
10 10

63 12

10 5 , which

more or less holds already for τ = 10−6 s, and is warranted
for shorter values of τ. It will get worse with further increase of
pressure.
Building a fully consistent theory strictly applicable in all

limiting cases is a challenging future task. However, although
the common sense advises us that we must maintain certain
elements of “adiabaticity” when “constructing” the combination
of two theories, the results that we have obtained look
meaningful in all the studied limits. We thus leave it for
experiments to test the predictions of this simple theory.
Discrepancies with it will motivate development of more
complicated approaches.
As already mentioned, nowhere in the paper have we

considered the effect of the load on the resulting current and
power. Indeed, the voltage drop across the capacitor must
generally be affected by other elements of the full circuit and
would depend on the Ohmic potential drop across the load,
which in turn depends on the current. Equations of the current
then become generally much more complicated (for the Ohmic
drop and simple sinusoidal signals they can be obtained in
analytical form, as shown by Krupenkin and Taylor).6 In
Appendix C, we derive a criterion, when the effect of a resistive
load on the equations for the current and power generation can
be neglected, analyzing its consequences for the case of
“walking frequencies” and estimated capacitances. The
corresponding constraints could be even more serious, if we
used Krupenkin’s patched surfaces that dramatically increase
the frequency of the current oscillation. Such other options may
be considered in future developments of the double-layer shoe
with ultraporous soles based on, for example, the structures of

Figure 8. Pressure dependence of the short circuit power density, as a
function of p, the portion of pressure of 105 Pa. (For an average adult
individual, p ∼ 1). The blue solid curve is calculated via eq 13.
Parameters are the same as those in Figure 1, and ε = 0.5. For
comparison, the dotted green curve corresponds to the case of no
diffusion limitations (eq 16).
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functionalized carbon nanomaterials. Consideration of full
circuits is a subject of electrical engineering, which is beyond
the scope of a paper devoted to physical-chemical aspects of the
electrical double-layer-based capacitive power generation, but in
laboratory experiments aimed on testing predictions of this
theory, the conditions specified in Appendix C should be
obeyed.
The ambition to build structures with narrow pores to

increase the surface area and the current may encounter
completely different problems, related to capillary hysteresis,24

full stall of the liquid in the pore, and a number of other side
effects, as discussed in previous work.8 Thus, the theory
presented here tells us what fundamental limitations we could
face already in the “ideal world”, based on essential physics that
cannot be bypassed by mere improvement of the quality of
solid surfaces.

■ APPENDIX A: TRANSMISSION LINE CHARGING
The transmission line theory has existed for, perhaps, over a
century and can be applied in different contexts.25 As we could
not find in the literature the solution obtained in the format
exactly needed for this paper, we briefly outline here the
principles of its derivation and the properties of the result,
which also makes it easier to understand approximations made
in the main text.

The sketch of the transmission line is described here. The
electrical current, which in our context is the current of ions
through the electrolyte, runs along a set of resistors. Current is
blocked at the end point of the line, but on its propagation, it
can charge a chain of capacitors. There can be no stationary
current across such system, only a transient one, triggered by
jump-wise change of voltage. We will consider below such a
situation (in the main text we readjust it to the case of a
constantly applied voltage and changing length of the line). De
Levie was, presumably, the first to apply such model for
calculation of impedance of charging porous electrodes filled
with electrolyte.26 Very recently, it has been used in the
problem of capacitive desalination.14

Basic Equations
In the continuum version of the theory, we first have the
continuity equation

∂
∂

= −
J z t

z
j z t

( , )
( , )

(A.1)

Here, z is the coordinate along the pore, t is time, J is the ionic
current density, j is the sink current that charge the capacitance
of the double layer at the interface, where

=
∂

∂
j z t

q z t
t

( , )
( , )

(A.2)

and q(z, t) is volume charge density in the double layer at the
wall of the pore. The latter can be expressed through the
surface charge density, σ(z, t)

σ=q z t z t
S
V

( , ) ( , )
(A.3)

where S is the internal surface area of the pore and V is its
volume. Thus,

=S
V l

1
(A.4)

where l is the characteristic size of the pore. For a cylindrical

pore of radius r, = π
π

l r L
rL2

2

where L is the length of the pore, so

that

=l r/2 (A.5)

Let us now introduce the potential in the “bulk” of the pore,
φ(z, t). The double-layer capacitance per unit surface area as a
function of potential drop across the double layer,
(φelectrode − φ), is defined as

φ φ
σ

φ φ
σ

φ φ
− =

∂
∂ −

= ∂
∂ −

C( )
( ) ( )electrode

electrode

electrode electrode
(A.6)

Combining eqs A.6, A.3, and A.2, we obtain

φ φ
φ φ∂

∂
= − −

∂ −
∂

q
t l

C
t

1
( )

( )
electrode

electrode
(A.7)

We can substitute this into eqs A.2 and A.1 to obtain

φ φ
φ φ∂

∂
= −

∂ −
∂

J z t
z l

C
t

( , ) 1
( )

( )
electrode

electrode
(A.8)

We must also take into account Ohm’s law

φ= −Σ ∂
∂

J
z (A.9)

where ∑ is the ionic conductivity.
Using the notation for the potential drop across the double

layer

φ φ= −u z t t z t( , ) ( ) ( , )electrode (A.10)

and combining eqs A.9 and A.10, we obtain the master
equation:

∂
∂

=
Σ

Ψ ∂
∂

u
z

C
l

u
u
t

( )
2

2
0

(A.11)

where we have introduced the following convenient notations:

Ψ =u C u C( ) ( )/ 0 (A.12)

Here C0 = C(u = 0) is a linear response capacitance, and Ψ(u)
is a function describing how the real capacitance of the double
layer changes with voltage across the double layer. If it does not
change with voltage (almost never the case!), then Ψ(u) = 1.
Note that C0 = C(u = 0). Hereafter, we proceed assuming Ψ(u)
= 1, as only in this case can one obtain transparent analytical
results. With Ψ(u) = 1, eq A.11 becomes a familiar “diffusion-
type” equation.
We consider the following initial and boundary conditions.

At the initial time moment, the pore is completely electro-
neutral all the way along.

= − =u z t( , 0) 0 (A.13)

This changes jump-wise. At the entrance of the pore, the
potential is assumed to be momentarily screened and equal to
the potential drop between the electrode and the bulk of the
solution, which we call u ̅; therefore,
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> = ̅u t u(0, 0) (A.14)

This is because there are many ions at the pore entrance, so the
counter electrode is close. They do not need to migrate a long
distance to the double layer at the entrance. Finally

∂ =
=

u z t
dz
( , )

0
z L (A.15)

The latter condition is understood using the Coulomb law: It
states that the current at the closed end of the pore (if it has
closed end) or in the middle of the pore (if its both ends are
open) is zero. Depending on the situation, L will stand either
for the length of the pore or half length of the pore (we of
course have already assumed in all the corresponding equations
above that the pore structure and properties do not change
along its length). In the context of the present paper, L will
stand for the length of the liquid column penetrating into the
pore, because ions of electrolyte redistribute within the liquid
phase not shooting into the gas phase.
The Solution
To make our equations more compact, let us use dimensionless
notations:

τ τ= Σ = = Λ =C l Z z l t L l/ , / , S / , /0 (A.16)

and

= ̅ = ̅u
k T

u
k T

U
e

, U
e

B B (A.17)

Our master equation will then take a “parameter-free form”

∂
∂

= ∂
∂Z

U U
S

2

2 (A.18)

with the conditions

= − =ZU( , S 0) 0 (A.19)

∂
∂

=
=Λ

ZU( , S)
Z

0
Z (A.20)

= = ̅ZU( 0, S) U (A.21)

The solution for U(Z, S) can be obtained using Laplace
transformation:

∫π
= ̃

γ

γ

− ∞

+ ∞
Z

i
ZU( , S)

1
2

dq e U( , q)
i

i
qS

(A.22)

where γ is a real number so that the contour path of integration
is in the region of convergence of the integrand. For the
Laplace transformation

∫̃ =
∞

−Z ZU( , q) dS e U( , S)
0

qS
(A.23)

and eq A.18 will give an equation

∂ ̃
∂

= ̃Z
Z

q Z
U( , q)

U( , q)
2

2 (A.24)

Its general solution is ̃ = + −U(Z, q) A e B eZ Z
q

q
q

q . Apply-

ing boundary condition (eq A.20), we find = − ΛA B eq q
2 q ,

and ̃ = +− Λ −U(Z, q) B {e e }Z Z
q

q [ 2 ] q . By substituting this
result into eq A.21 and taking into account that if the Laplace

original is equal to a Constant, its Laplace transform is equal to

Const/q. Hence we find, = ̅
+ − ΛBq

U
q[1 e ]q 2 , and finally

̃ = ̅
Λ −

· Λ
Z

U(Z, q) U
cosh{( ) q }

q cosh{ q } (A.25)

The original of this Laplace transform reads27

∑
π

π

π

̃ = ̅ − −
+

+ −
Λ

− +
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⎫
⎬
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2 ( 1)

( 1/2)
cos

1
2

1

exp
1
2

S

n

n

0

2
2

2
(A.26)

This is our solution. It is easy to check that it satisfies all the
three conditions eqs A.19−A.21. From this solution we can
derive any characteristics we are interested in.
Charge in the Pore
Let us go back to dimensional variables and prepare expressions
to calculate the current density and net accumulated charge in
the pore if we get u(z, t) from its dimensionless representation,
U(Z, S).
If we integrate eq A.1, then we will obtain

∫

∫
∫

∫

σ

σ

∂
∂

= −

= −
∂

∂

= − ∂
∂

= ∂
∂

−

= − ∂
∂

⎧⎨⎩
⎫⎬⎭

z
J z t

z
J L t J t

z
q z t

t

l
z

z t
t

t l
z z t

ll
Q
t

d
( , )

( , ) (0, )

d
( , )

1
d

( , )

1
d ( , )

1

L

L

L

L

0

0

0

0

p (A.27)

where

∫=
∂

∂
Q t ll z q z t

q z t
z

( ) d ( , )
( , )L

p
0 (A.28)

is the net charge in the pore accumulated by the time t. Taking
into account that due to the boundary condition of eq A.15,

from eq A.27, i.e., from its middle part = ∂
∂J t(0, )

ll
Q
t

1

p
, we get

∫ ∫= ′ ′ = Σ ′ ∂
∂ =

Q t ll t J t ll t
u z t

z
( ) d (0, ) d

( , )t t

z
p

0
p

0 0
(A.29)

In dimensional variables (as we prepared our solution in the
dimensionless form) this will read:

∫= ′ ∂ ′
∂ =

Q t
k T

e
C ll

U Z
Z

( ) dS
( , S )

Z

B
0 p

0

S

0 (A.30)

Differentiating eq A.26 over Z and taking this derivative at Z =
0, we obtain

π= Λ ̅
Λ

⎛
⎝⎜

⎞
⎠⎟Q

k T
e

C ll FU SB
0 p

2

2
(A.31)

∑
π

≡ −
− +

+=

∞

F y
n y

n
( ) 1

2 exp{ ( 1/2) }
( 1/2)n

2
0

2

2
(A.32)
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In dimensional units eq A.32 will read:

π
τ

=
⎛
⎝⎜

⎞
⎠⎟Q Q F

l
L

t
max

2 2

2
(A.33)

where

= ̅Q C Ll umax 0 p (A.34)

is the maximal acceptable charge in the pore with the specific
capacitance of the double layer C0.
Using the obtained solution of eq A.26, we can also derive

the equation for the evolution of the charge with the spatial
distribution, but this lies beyond the scope of the interests of
this paper.

Limiting Cases

At late times, S → ∞, F(∞) = 1, and = Λ ̅Q C ll Uk T
e 0 p
B , which

in dimensional units returns

=Q Q max (A.35)

This result is correct, as it is the maximal acceptable charge in
the pore the specific capacitance of the double of which is C0.

At early times, ≪
π
ΛS

2

2 ; in dimensional units, this means

τ≪
π( )t

l
L 2

. This will correspond to small values of y in eq

A.32. Hence, one may evaluate the sum in it replacing it by an
integral, i.e., approximating
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Hence, = ̅
π

Q C ll U Sk T
e 0 p

2B
1/2 ; in dimensional variables this

reads

π τ
= ̅Q C ll u

t2
0 p 1/2 (A.36)

and is a diffusional type of charging.

■ APPENDIX B: GENERATING CURRENT WITH
PERIODICAL PULSED PRESSURE

Let us consider a problem of generating the electrical current
within a transmission line approach for the case when the
pulsed pressure is applied. Now let the pressure be −P0 before
the process starts. Then, we assume that the pressure varies in
one period of time T = π

ω
2 as

π
ω

π
ω

π
ω

= < < = − < <P t P t P t P t( ) , 0 ; ( ) ,
2

0 0 (B.1)

For the next periods, the pressure variation is repeated, so for
us it is enough to consider only one period.

Solving the Washburn equation, =L AP t( )L
t

d
d

,8 for the

motion of the liquid in the pore leads to the following evolution
of the penetration depth

π
ω

π
ω

π
ω

π
ω

= < <

= − < <

L t AP t t

L t AP t t

( ) 2 , 0 ;

( ) 2
2

,
2

0

0
(B.2)

This allows us to calculate the evolution of the net charge,
using eq 3,

πτ
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and
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Then, we can easily calculate the generated current. In the first
half of the period, it can be shown that

πτ
= ̅ −
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In the next step, following the procedure described in the
main text, we can estimate the generated power density
considering only one-half of the period. It can be shown that

ε
π

ω
π

π
ω

⟨ ⟩ = ⎜ ⎟
⎛
⎝

⎞
⎠J

r
Q2 (B.6)

which leads to the following expression for the “short-circuit”
power density:

ε
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ω
πτ

= ̅ −
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦
⎥⎥W

l
C u AP f

l
AP

2
1

20
2

0

2

0 (B.7)

In the limit when the ion migration time is very short, the
power density is equal to

ε
π

ω= ̅W
l

C u AP
2

0
2

0 (B.8)

One can see from eq B.7 that the power density depends on the
frequency as ∼√ω, i.e., in the same way as for the case with
sinusoidal variation in the pressure described in the main text.
Similarly, we can estimate the dependence on the maximal
exerted pressure. At small pressures the power density behaves
as described in eq B.8, while for larger pressure it saturates to
the value

ε
π

ω
τ

= ̅W
C u2 0

2

(B.9)

Thus, the current generation for the pulsed staircase variation
of the pressure is qualitatively similar to the case of the
sinusoidal variation considered in detail in the main text. The
only difference is in the magnitude of the corresponding
quantities.
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■ APPENDIX C: WHEN WE CAN NEGLECT THE
OHMIC LOAD IN THE CALCULATION OF
GENERATED CURRENT

For the purpose of the estimate that we will obtain below, let us
neglect all the effects of ion migration limitations, the main
subject of the present paper. In that case, varying the
capacitance C with time, t, at a constant bias voltage u ̅, we
provide with no delay the charge stored in the capacitor.
Ideally, the time dependence of charge should reproduce the
time dependence of the capacitance

= ̅Q t C t u( ) ( ) (C.1)

However, eq C.1 does not take into account Ohm’s voltage
drop in the circuit. Taking the latter into account, instead of eq
C.1, we should write

=Q t C t V t( ) ( ) ( )c (C.2)

Here Vc(t) is the voltage drop across the capacitor, which is
only a part of the total voltage drop and it will be time
dependent, because

= ̅ −V t u V t( ) ( )c Ohm (C.3)

with

= =V t RI t R
Q t

t
( ) ( )

d ( )
dOhm (C.4)

where R is the circuit resistance, dominated by the load.
Combining eqs C.2−C.4, we obtain a linear differential

equation equation on Q(t):

+ − ̅ =R
Q
t

Q
C t

u
d
d ( )

0
(C.5)

Its solution could be investigated for a given form of C(t) (for
example, see ref 6). However, we will not be doing it here and
instead estimate the importance of the difference between eq
C.5 and the simplified eq C.1. The difference is unimportant if
the first term in eq C.5 can be neglected with respect to the two
other terms. The estimate can be obtained by iteration,
substituting in the first term the “zero-order” approximation,
Q(t) ≈ C(t)u ̅ and thus obtaining the requirement,

̅ ≪ | ̅|R u uC
t

d
d

, i.e.,

≪R
C
t

d
d

1
(C.6)

If C(t) is some kind of periodic function of time with amplitude
C0 and frequency ω (as in ref 6), then eq C.6 will give

ω ≪ RC1/ 0 (C.7)

Consider our typical 1 s period; thus, ω = 2π s−1. For a
current generated just by one pore, this criterion will of course
be satisfied. Indeed, even if we take a load with R = 10 kOhm
and C0 = 0.1 F/m2(2πrL) = 0.1 F/m2(2π × 10−6 m)(2 × 10−3

m) = 1.26 × 10−9 F, we get a requirement of ω ≪ 105 s−1.
However, this is only for one pore! The number of such pores
in a 50 cm2 sole at 10% porosity will be 1.6 × 108; hence, the
capacitance will be that many times larger, ending up with the
constraint ω ≪ 10−3 s−1. Thus, if we want to describe the
current generated by the whole shoe, neglecting the circuit
resistance, then we cannot allow the resistance to be larger than
∼1 Ohm. Of course, if we reduce the area from which we
collect the current, say to 1 cm2, we could afford 50 times larger

resistance for the current calculation to remain valid, whereas
for a 1 mm2 sensor it could be 5 kOhm
When criterion eq C.9 is fulfilled and the load can be

neglected in the calculation of the current, the power
accumulated in the load would, of course, depend on the
load and will be equal to ⟨I(t)2⟩R.
Similar analysis which accounts for ion transport limitations

would be much more cumbersome and unlikely possible in
analytical terms, but since the transmission line charging slows
down variation of charge, the effect of the first term in eq C.5
would be smaller than in the adiabatic approximation.
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(27) Bateman, H.; Erdeĺlyi, A. Tables of integral transforms 1;
McGraw-Hill: New York, 1954.

The Journal of Physical Chemistry C Article

DOI: 10.1021/acs.jpcc.6b11385
J. Phys. Chem. C 2017, 121, 7584−7595

7595

http://dx.doi.org/10.1021/acs.jpcc.6b11385

