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ABSTRACT: Recent experimental advances on investigating nanoparticle catalysts with multiple
active sites provided a large amount of quantitative information on catalytic processes. These
observations stimulated significant theoretical efforts, but the underlying molecular mechanisms are
still not well-understood. We introduce a simple theoretical method to analyze the reaction dynamics
on catalysts with multiple active sites based on a discrete-state stochastic description and obtain a
comprehensive description of the dynamics of chemical reactions on such catalysts. We explicitly
determine how the dynamics of catalyzed chemical reactions depend on the number of active sites,
on the number of intermediate chemical transitions, and on the topology of underlying chemical
reactions. It is argued that the theory provides quantitative bounds for realistic dynamic properties of
catalytic processes that can be directly applied to analyze the experimental observations. In addition,
this theoretical approach clarifies several important aspects of the molecular mechanisms of chemical reactions on catalysts.

I t is impossible to imagine modern industrial processes or
scientific research activities without use of catalysts that

accelerate the required chemical processes.1−3 Despite the
importance of catalysis and many years of intensive studies,
however, the molecular mechanisms of catalytic phenomena
still remain not well-understood.3,4 Significant progress in
development of experimental methods for probing the catalytic
processes has been achieved in recent years. This is mostly due
to the developments of various single-molecule techniques that
allowed researchers to uncover the molecular properties of
catalytic systems, which are hidden in the ensemble-averaged
bulk measurements.5,6

Single-molecule fluorescence microscopy experiments inves-
tigated the chemical transformations of nonfluorescent
reactants into fluorescent products when single nanoparticles
(NPs) have been used as catalysts.5,7 This allowed researchers
to achieve excellent spatial and temporal resolutions. The
stochastic fluorescent bursts associated with the product
formation events were attributed to single catalytic turnovers,
and the distributions of waiting times for such events have
been measured. The real-time observations of single catalytic
turnovers on a single NP catalyst showed that there are wide
distributions in the effective rates for the product formation
and dissociation and that there are also strong fluctuations in
the time-dependent chemical activity.5,7−9 It has been argued
that in a single NP, the intrinsic structural heterogeneity
among the different active sites is responsible for such time-
dependent fluctuations in the rates of catalytic product
formation and dissociation. In addition, it was found that the
temporal dependence of the catalytic activities is determined
by the size of nanoparticles which can affect the dynamic
surface restructuring.10,11 The study of catalysis using single-
molecule fluorescence microscopy has been also successful in

revealing the kinetic mechanisms for several specific enzymatic
systems.12,13 Furthermore, these experimental methods have
been used recently to investigate the single-molecule kinetics
of chemical reactions on gold nanoparticles, uncovering hidden
kinetic intermediates that are masked in ensemble-averaged
studies.14

Single-molecule experimental studies of chemical processes
on catalysts have collected a large amount of quantitative
information, which stimulated the development of various
theoretical methods.6 The earliest theoretical attempt was
based on a Langmuir−Hinshelwood approach that assumes the
binding/unbinding equilibrium between the substrates and the
catalyst and views all active sites as a single “effective” catalytic
site.15 However, this approach could not explain the
experimentally observed size-dependent catalytic activity, and
because of its mean-field nature it also failed to account for
various stochastic effects.11 A more advanced theoretical
method based on first-passage analysis of chemical dynam-
ics,16,17 which could partially take into account the number of
active sites and the related stochastic effects, was proposed
later.18,19 But this method was also too simplified in many
aspects because it did not consider the details of the underlying
chemical reactions or the number of intermediates for the
chemical processes at each active site. Recently, we developed
a new general theoretical framework for investigating the

Received: October 30, 2021
Accepted: December 1, 2021
Published: December 3, 2021

Letterpubs.acs.org/JPCL

© 2021 American Chemical Society
11802

https://doi.org/10.1021/acs.jpclett.1c03557
J. Phys. Chem. Lett. 2021, 12, 11802−11810

D
ow

nl
oa

de
d 

vi
a 

R
IC

E
 U

N
IV

 o
n 

Ja
nu

ar
y 

26
, 2

02
2 

at
 1

7:
55

:4
8 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bhawakshi+Punia"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Srabanti+Chaudhury"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="A.+B.+Kolomeisky"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jpclett.1c03557&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.1c03557?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.1c03557?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.1c03557?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.1c03557?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.1c03557?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jpclcd/12/49?ref=pdf
https://pubs.acs.org/toc/jpclcd/12/49?ref=pdf
https://pubs.acs.org/toc/jpclcd/12/49?ref=pdf
https://pubs.acs.org/toc/jpclcd/12/49?ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jpclett.1c03557?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JPCL?ref=pdf
https://pubs.acs.org/JPCL?ref=pdf


dynamics of chemical reactions with intermediate states on
catalytic particles with multiple active sites.20 It utilized a
discrete-state chemical kinetic approach that takes into account
the stochasticity of individual chemical reactions at each
catalytic site on a single NP.20,21 The main idea of this method
is to follow the dynamics of only those active sites that are just
one step before making the final product. This allows better
connection with experimental observations and it also
significantly decreases the complexity of mathematical
calculations of dynamic properties because the originally very
complicated multistate system can now be described as a much
simpler one-dimensional sequence of effective chemical kinetic
“states.”20

Using this discrete-state stochastic approach, it was explicitly
shown that the mean reaction times are inversely proportional
to the number of active sites irrespective of the details of
underlying chemical reactions.20 It was also found that the
higher moments of reaction times are affected by the details of
the chemical reactions at each active site. However, a
comprehensive description of the reaction dynamics on a
multisite catalyst has been obtained only for the simplified
situations with N = 1, 2, and 3 active sites, while in real systems
even on the smallest nanoparticles the number of active sites is
significantly larger (probably N ≈ 10−1000). This observation
limits the applicability of the discrete-state stochastic frame-
work for understanding the mechanisms of catalytic processes.
In this Letter, we develop a simple discrete-state stochastic

model of the catalytic chemical reactions on particles with
multiple active sites, which can be solved analytically for any
number of active sites and for all ranges of relevant parameters.
It allows us to obtain a comprehensive explicit description of
the reaction dynamics on heterogeneous catalysts and to make
the connections between the molecular processes and the
observed dynamic features. Our analysis explicitly shows the
dependence of the dynamics of catalyzed chemical reactions on
the number of active sites, number of intermediate chemical
species, and topology of underlying chemical reactions. It is
argued that the calculated dynamic properties present
quantitative bounds for dynamic properties measured in
experiments, clarifying many aspects of molecular mechanisms
for chemical reactions on catalysts.
To obtain a comprehensive description of dynamic proper-

ties of catalyzed chemical reactions, let us consider a single
nanoparticle with N active sites that might catalyze only one
specific chemical reaction. Each active site is independent of
each other, and for every chemical reaction there are M
intermediate states, as schematically shown in Figure 1a. In this
process, the substrate molecule S binds to the catalytic site
(labeled as C in Figure 1a) to create the complex CS1 that
sequentially transitions through the M intermediate states CSj

(1 ≤ j ≤ M). From the last complex CSM, the final product P
can be achieved that also releases the catalytic site for a new
chemical process. All these transitions are irreversible and
assumed to be happening with the same rate u (which sets the
time scale in the system). Please note that the first transition
(binding of the substrate) is different from other transitions
and its rate is concentration-dependent, but for convenience
we assume that all transition rates are the same.
Using the idea of the mapping of multiple chemical reactions

catalyzed on N active sites of the single NP on a sequence of
effective discrete states,20 the effective chemical kinetic scheme
for the whole catalyst with the sequential reaction is presented
in Figure 1b. The chemical processes on the single catalyst
with N active sites can be viewed as a sequence of stochastic
transitions between N + 1 discrete states. Each state n (0 ≤ n ≤
N) corresponds to the effective chemical kinetic state of the
system with exactly n active sites in the conformation CSM.
This happens after M intermediate transitions at the given site
are already accomplished (CSj → CSj+1), and the system is
ready for the final transition to make the product molecule at
the given site (Figure 1a). From the state n, the final product
can be made with the effective rate nu because all active sites
are independent. This also moves the system back into the
state n − 1 because the active site where the product was made
is not in the CSM conformation anymore. The effective forward
transition (n → n + 1) in this kinetic scheme is taking place
with a rate (N − n)r = (N − n)u/M (Figure 1b), where the
effective rate constant r for transitions between discrete states
(Figure 1b) is given by

=r
u
M (1)

This effective forward rate r can be explained using the
following arguments. In our simplified model, all intermediate
chemical states are equally probable, and the transition to CSM
will occur only from the chemical state CSM−1. There are M
possible intermediate chemical states that did not reach yet the
state CSM (i.e., C, CS1, CS2, ..., CSM−1). This means that the
probability to find the system in the chemical state CSM−1 from
which the transition will happen is 1/M. At the same time, for
the effective state n there are (N − n) active sites that did not
yet reach the conformation CSM.
This simplified theoretical model provides a minimal

description of chemical reactions on catalysts with multiple
active sites. It neglects the backward transitions, but in a real
system, they are expected to be smaller than the forward
transitions, making our simple theory reasonable enough from
the experimental point of view. For simplicity, it is also
assumed that u = 1 because it determines only the time scale in
the system.

Figure 1. Schematic representation of chemical processes on heterogeneous catalysts with N identical active sites. (a) A sequential chemical
reaction with M intermediates. (b) Overall effective chemical kinetic scheme for the whole catalytic particle. Each discrete state n corresponds to
the state of the system with n (0 ≤ n ≤ N) active sites in the chemical conformation (CSM) just before making the product. For transitions between
the states, the effective rate constant is =r u

M
.
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To analyze the dynamic properties of the system, we employ
a powerful method of first-passage probability densities that
was successfully utilized in analyzing various problems in
chemistry, physics, and biology.22−25 This is also stimulated by
experimental observations that count the catalytic cycle as soon
as the product molecule is created for the first time at the given
active site. For this purpose, one can define a function Fn(t) as
a probability density function to complete the catalytic cycle at
time t starting at the state n at time t = 0. The temporal
evolution of these first-passage probability densities is
governed by a set of backward master equations20,22
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where FP(t) is for the product state with FP(t) = δ(t). This
physically means that if the system starts in this state, the
process is immediately accomplished.20

This set of backward master equations can be analyzed in

the Laplace space [
Ù ∫=

∞ −F s F t t( ) e ( )dn
st

n0
] with the initial

condition Fn(t = 0) = 0, which yields
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Solving these equations leads to the explicit expression for the
first-passage probability density functions in a compact form:
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Alternatively, the same result can be written as
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These expressions for the first-passage probability density
functions are crucial because they allow us to obtain a full
dynamic description of chemical reactions on multisite
catalysts for a general set of parameters and conditions.
By inverting the explicit Laplace transformation expressions

(see eq 5), one can obtain the distributions of first-passage
times to make a product molecule starting from any effective
chemical state n. The results for the simplest model with N = 2
and M = 1 are presented in Figure 2 to illustrate this approach.
One can see that the distributions of first-passage times depend
on the starting state of the system. Distributions that start
initially from the state n = 0 [F0(t)] are always non-monotonic
because to reach the final product the system must first pass
several intermediate states. However, if the process starts from
the other states [Fn>0(t)], then the distributions should have a
more complex shape, starting from a finite value at t = 0 (see
Figure 2).
Using our theoretical model, more specific dynamic

information on underlying molecular mechanisms can be
obtained. For example, we can explicitly estimate the mean
reaction time (catalytic turnover times) and second moment of
the reaction time. But these calculations involve several steps.
Expanding

Ù
F s( )n , we obtain

Ù ≃ − ⟨ ⟩+ ⟨ ⟩ −F s s T T s( ) 1
1
2

...n n n
2 2

(6)

where ⟨Tn⟩ is the mean first-passage time and ⟨Tn
2⟩ is the

second moment of the first-passage time if starting from the
state n. Then from eq 5 it can be shown that
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and we explicitly obtain

Figure 2. Chemical reaction time distributions for a system with N = 2 and M = 1, showing results for n = 0 (black), n = 1 (blue), and n = 2 (red).
The solid lines are the theoretical predictions obtained by taking inverse Laplace transforms, and the symbols are from Monte Carlo simulations.
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One could also obtain ⟨ ⟩ =TN N
1 , which can be easily

explained. In the state N, all active sites are in the
conformation CSM just before making the product. The
probability that the reaction will be accomplished from any
active site is equal to 1/N and the time for this transition is 1
(because we assumed u = 1).
Similar analysis can be done for second moment of the first-

passage times, leading to
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Here one can also show that ⟨ ⟩ =TN N
2 2

2 . Note, however, that

to obtain mean reaction times and second moment of the
reaction times, the quantities that are measured in single-
molecule experiments, additional calculations should be done,
as we explain below.20

Assuming that our system is already in the stationary state,
we define Pn as the steady-state probability of finding the
system in the effective chemical kinetic state n. Then because
the number of the discrete states in the system is finite and the
steady state between these effective states will be reached at t
→ ∞, the following relations can be written for these
probabilities (see Figure 1b)20

=

− =

=−
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P P
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P P

M
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1

N N

0 1

1 2

1 (10)

Considering the normalization condition, ∑n = 0
N Pn = 1, these

equations can be easily solved to obtain the steady-state
probabilities20

= !
− ! ! +

P N
N

N n n
x

x
( )

( ) (1 )n

n

N (11)

where =x
M
1 .

We are interested in evaluating the mean reaction (catalytic
turnover) times for chemical reactions described in Figure 1a
that are taking place on the catalysts with N active sites, ⟨τ⟩N. It
is convenient to think about these processes in the way the
s i n g l e -mo l e c u l e fluo r e s c en c e e xp e r imen t s a r e
done.5,7,11,14,15,26,27 Every time the product molecule is formed,
a spike in the fluorescence appears. Then the reaction times are
the time intervals between two consecutive spikes, and the
mean reaction times are measured by averaging over all pairs of
intervals between consecutive spikes. In the language of our
effective chemical-kinetic model (Figure 1b), the mean
reaction time is the properly weighted average over first-
passage times from all the states n except the state n = N. This
is because in the state n = N all active sites are in the
conformation CSM just before making the product and none of
the active sites had just produced the molecule P (had a spike
in the fluorescent signal), and the reaction cannot start in this
kinetic state. As a result, the mean reaction time can be written
as

∑
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where r = u/M. This important result predicts that the mean
reaction times on such heterogeneous catalysts are propor-
tional to the number of intermediates and inversely propor-
tional to the number of active sites.
The coefficient f n, which is the relative contribution of

different effective states n into the reaction time, can be found
from

=
−

∑ −=

f
N n P N

N j P N

( ) ( )

( ) ( )n
n

j
N

j0 (13)

This result can be explained in the following way. In the state
n, there are (N − n) active sites which are not in the

Figure 3. Mean reaction times as a function of (a) the number of active sites N for M = 1 (black line), M = 5 (red line), and M = 10 (blue line)
intermediate chemical conformations and (b) the number of intermediatesM for N = 1 (black line), N = 5 (red line), and N = 10 (blue line) active
sites. The solid lines are the theoretical predictions, and the symbols are from Monte Carlo simulations.
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conformation CSM, and the catalytic cycle might start at any of
them. Then the coefficient f n is the relative probability for the
chemical reaction to start in the state n normalized over all
possible starting situations. These relative probabilities can be
estimated by substituting eq 11 into eq 13, producing

= − !
− − ! ! +

= −−f
N

N n n
x
x

P N
( 1)

( 1) (1 )
( 1)n

n

N n1 (14)

with f N = 0, as expected.
In Figure 3a we present the results for the mean reaction

times as the function of the number of active sites N for the
fixed number of intermediates M. As expected, the mean
reaction times decrease with N because more chemical
reactions can take place at more active sites, decreasing the
time intervals between successful fluorescence events. Figure
3b shows the mean reaction times as a function of the number
of intermediates M for the fixed number of active sites N. Here
the mean reaction times increase with the number of
intermediates because more intermediate transitions must
happen before the product is made. A linear dependence on M
is observed because all chemical transitions have the same rates
and only the forward steps are considered in these chemical
reactions.
Similar analysis can be done for second moment of the

reaction times, and we can write

∑τ⟨ ⟩ = ⟨ ⟩
=

−

f TN
n

N

n n
2

0

1
2

(15)

Together, eqs 11−15 provide an exact analytical description
for mean reaction times and for second moment of reaction
times for arbitrary sets of parameters.
To understand the molecular mechanisms of complex

chemical and biological processes, one frequently utilizes a
dimensionless parameter known as the randomness parameter,
R.22,28 This is the quantity that measures the degree of
stochastic fluctuations, and it provides the information on the
underlying chemical kinetic scheme.22 The smaller the
deviation of this parameter from unity, the smaller the degree
of stochastic fluctuations in the system. In addition, 1/R gives
the bound for the number of rate-limiting chemical states for
the sequential kinetic schemes. There are several closely
related definitions of this parameter. In this work, we employ
the following definition:

τ τ
τ

=
⟨ ⟩ − ⟨ ⟩

⟨ ⟩
RN M

N N

N
,

2 2

2
(16)

which views the randomness as the normalized variance of the
reaction times.
In Figure 4 we present the results of our explicit calculations

for the randomness parameters as the function of the number
of intermediate chemical states M for variable number of active
sites N. In all situations, the dependence is nonmonotonic,
starting from R = 1 for a noncatalytic reaction with M = 0,
going through the minimal value at M = 1 and then
approaching again unity for M → ∞. While the general
nonmonotonic behavior is observed in all conditions,
increasing the number of active sites decreases the deviation
of the randomness from 1, which agrees with the reported
experimental trends.11 The most surprising observation here is
that the maximal degree of stochastic fluctuations, measured
via the normalized variances of the reaction times, is achieved

for the systems with chemical reactions having only one
intermediate state (M = 1), and adding more intermediates (M
> 1) decreases the noise, in contrast to naive expectations.
These results can be explained in our simple theoretical

model. For M = 0, which corresponds to a noncatalytic
reaction in the effective chemical kinetic scheme (Figure 1b)
only 1 state n = N is possible, i.e., all active sites are always in
the state just before making the product. In this case, we have

τ τ⟨ ⟩ = ⟨ ⟩ = ⟨ ⟩ = ⟨ ⟩ =T
N

T
N

1
,

2
N N N N

2 2
2 (17)

which after substituting into eq 16 gives R(N, M = 0) = 1. The
randomness parameter is equal to 1 because there is only one
effective chemical state in the system. The product molecules
can be created in one step from any of the N active sites. In the
limit of M ≫ 1, the system is also mainly found in only one
effective chemical state, but this time it corresponds to n = 0
(see Figure 1b) because it is almost impossible for any active
site to reach the conformation CSM before the production of
molecules P. This again leads to R(N, M → ∞) = 1. For any
intermediate values of M, several effective chemical states are
possible and the randomness parameter is less than 1, leading
to the nonmonotonic behavior shown in Figure 4. However,
the system mostly prefers to be found in the states closer to n =
N for any M > 1. The situation for M = 1 corresponds to some
kind of the intermediate situation. It is more probable to find
the system in the state n ≃ N/2, but all other states in the
system can also be reached. Because the larger number of
chemical states is typically explored for M = 1, the randomness
parameter deviates in the maximal way from unity, indicating
the maximal level of stochastic fluctuations in the reaction
times for this case.
The dependence of the randomness parameter on the

number of active sites is illustrated in Figure 5. This parameter
is always an increasing function of N with R(N, M) ≥ 0.5 and
R(N→∞,M)→ 1. One can notice that for very large number
of active sites (N ≈ 100) the randomness parameter becomes
independent of the number of intermediates M. This suggests
that experimental measurements of the randomness can
distinguish the mechanisms of underlying chemical reactions
only if catalysts have a relatively small number of active sites so
that the stochastic effects might show up. These predictions are
expected to be valid even for more general mechanisms of
catalyzed chemical reactions.

Figure 4. Randomness parameter as a function of the number of
intermediate chemical states M for N = 1 (black line), N = 5 (red
line), and N = 10 (blue line) active sites. The solid lines are the
theoretical predictions, and the symbols are from Monte Carlo
simulations.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.1c03557
J. Phys. Chem. Lett. 2021, 12, 11802−11810

11806

https://pubs.acs.org/doi/10.1021/acs.jpclett.1c03557?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.1c03557?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.1c03557?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.1c03557?fig=fig4&ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.1c03557?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


We can explain these observations because our theoretical
approach gives us the analytical solutions for all dynamic
properties. For N = 1 active site, only two chemical states, n =
0 and n = 1, are possible. Then one can obtain from eqs 8 and
9

⟨ ⟩ = + ⟨ ⟩ =T M T( 1), 10 1 (18)

and

⟨ ⟩ = + + ⟨ ⟩ =T M M T2( 1), 20
2 2

1
2

(19)

From eq 13, we derive f 0 = 1, and this gives us

τ

τ

⟨ ⟩ = ⟨ ⟩ = +

⟨ ⟩ = ⟨ ⟩ = + +

T M

T M M

( 1),

2( 1)
1 0

2
1 0

2 2
(20)

Substituting this into eq 16 finally leads to

= +
+

R M
M
M

(1, )
1

( 1)

2

2 (21)

Thus, for N = 1, the randomness parameter is lowest for small
number of intermediates, e.g., R(1, 1) = 0.5, R(1, 2) = 0.55 and
R(1, 3) = 0.625. For a large number of intermediates, M ≫ 1,
the randomness parameter approaches unity, as explained
above.
In the limit of large number of active sites (N → ∞), it can

be argued that the stationary distributions of chemical states in
our effective scheme is peaking around a specific value n*
which can be found from the condition that

∂
∂

=
P N

n
( )

0n
(22)

at n = n*. Explicit calculations presented in the Supporting
Information show that for N ≫ 1

* ≃
+

→ ∞ ≃*n
N

M
P N

1
, ( ) 1n (23)

Then, as shown in the Supporting Information, the mean
reaction times and the second moment of the reaction times
are given by

i
k
jjj

y
{
zzzτ τ⟨ ⟩ ≃ + ⟨ ⟩ ≃ +M

N
M

N
1

, 2
1

N N
2

2

(24)

Applying these expressions in eq 16 eventually leads to R(N →
∞, M) → 1.

The main advantage of our theoretical approach is that all
dynamic properties can be explicitly evaluated at all conditions,
allowing us to explain the physics of the observed phenomena.
At the same time, real chemical reactions on catalysts differ
from the assumptions made in our model: all transitions are
reversible and the rates are not uniform. In addition, more
complex topology of chemical reaction pathways can also be
observed. This limits the direct application of the simplest
model that we presented above for analysis of experimental
observations. However, one can argue that our explicit results
can be used as bounds in determining the important dynamic
features of catalytic processes, providing some important
microscopic information. Because our simple model neglected
the reverse chemical transitions and assumed that all rates are
the same, the calculated catalytic turnover times in our model
gives the lowest bound to the actual mean reaction times.
Adding the backward steps and making the rates nonuniform
should only slow down the processes in the system. Similarly,
the calculated randomness parameter provides the upper
bound to the parameter that can be measured in experiments
because in real systems more stochasticity is expected.
To illustrate the potential application of our theoretical

approach, let us consider a recent experimental study on
nanoparticle catalysis.14 In this work, single-molecule fluo-
rescence microscopy has been utilized to investigate the
oxidative deacetylation of organic molecules by hydrogen
peroxide on gold nanoparticles. It was found that there is a
single intermediate in this process, which corresponds toM = 1
in our notations. Using the reported distributions of reactions
times, we estimated that the lowest randomness parameter
value in this system is R ≈ 0.87. Then, our theory predicts that
in the simplest model this would correspond to N ≈ 11. This
means that in those gold nanoparticles there are, at least, 11
active sites where the reaction is taking place. These arguments
show how our theoretical method can be applied for a better
understanding of real catalytic processes.
Another advantage of our theoretical approach is that it can

be extended to more complex chemical reactions. To illustrate
this and to understand the role of more complex chemical
mechanisms that differ from the simplest sequential scheme in
Figure 1a, we consider the chemical reaction that involves
reversible branching transitions at all intermediate chemical
states.21,22 At each intermediate state CSj (j = 0, 1, ...,M) of the
chemical reaction, a reversible binding transition to the state
CSj* can occur with v1 and v2 as the forward and backward
transition rates, respectively (see Figure 6a). Note that the j =

Figure 5. Randomness parameter as a function of the number of active sites for M = 1 (black line), M = 5 (red line), and M = 10 (blue line). (a)
Results are shown for N ≤ 10. (b) Results are shown for N ≤ 100. The solid lines are the theoretical predictions and the symbols are from Monte
Carlo simulations.
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0 case (CS0 ≡ C) describes the empty active site without any
substrate, and we also assume that it might be in one of two
configurations (CS0 or CS0*). The substrate can bind only
when the active site in the conformation CS0 (Figure 6a). For
any active site, the conformation CSM (before making the final
product) can be achieved via a series of sequential forward
steps that can be occasionally slowed down by reversible
branching transitions. One can again build an effective
chemical kinetic model with N sequential states, as shown in
Figure 6b, but with different effective rate constants u′ = u + v1
and r. As explained in the Supporting Information, the effective
rate constant r is given by

=
+

+ +
r

u v
M M v v( 1) /

1

1 2 (25)

This means that the same analysis that we developed for the
sequential model can be directly applied for the model with
reversible branched transitions by proper rescaling of the
expressions. This allows us to obtain an explicit description of
dynamic properties for catalysis of branched chemical
reactions. For example, for the mean reaction times for the
branching chemical reactions it can be shown that

τ⟨ ⟩ =
+ +M v v

Nu
( 1)(1 / )

N
1 2

(26)

Figure 6. Schematic representations of chemical processes on heterogeneous catalysts with N identical active sites for (a) a branched chemical
reaction with M intermediates. (b) Overall effective chemical kinetic scheme for the whole catalyst with the following effective rate constant

= +
+ +r u v

M M v v( 1) /
1

1 2
.

Figure 7. Mean reaction times as a function of (a) the number of intermediate chemical states M for N = 1 (black line), N = 5 (red line), and N =
10 (blue line) active sites and (b) the number of active sites N for M = 1 (black line), M = 5 (red line), and M = 10 (blue line) intermediate
chemical conformations for reaction schemes involving branching. The branching transition rates used for calculations are v1 = 2 s−1 and v2 = 1 s−1.
The solid lines are theoretical predictions for the branching model; the dashed lines are theoretical predictions for the sequential model; and the
symbols are from Monte Carlo simulations of corresponding processes.

Figure 8. Randomness parameter as a function of (a) the number of intermediates M for N = 1 (black line), N = 5 (red line) and N = 10 (blue
line) active sites and (b) the number of active sites N for M = 1 (black line), M = 5 (red line), and M = 10 (blue line) intermediate chemical
conformations for reaction schemes involving branching. The branching transition rates used for calculations are v1 = 2 s−1 and v2 = 1 s−1. The solid
lines are theoretical predictions for the branching model; the dashed lines are theoretical predictions for the sequential model; and the symbols are
from Monte Carlo simulations of corresponding processes.
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Figure 7a shows the mean reaction times as a function of the
number of intermediates M for the fixed number of active sites
N and as a function of the number of active sites N for the
fixed number of intermediates M as illustrated in Figure 7b.
The behavior of the mean reaction times is similar for both
sequential and branching models. But for the fixed values of N
and M, the mean reaction times are longer in the system with
branching reactions, as expected. This happens because the
system can stay longer in those branched intermediate states
(CSj*) that delay the overall process of reaching the
conformation CSM. As shown in the Supporting Information,
using the first-passage time formalism, the higher moments and
the randomness parameter can be explicitly calculated for this
branching model.
Panels a and b of Figure 8 show the dependence of the

randomness parameter R on the number of intermediates and
the number of active sites, respectively, for sequential and
branching chemical reactions. One can see that the random-
ness parameter is larger for the reactions with branching at the
intermediate states. This corresponds to smaller stochastic
fluctuations in the system (R is larger) for the system with the
branched reactions. At first, this result seemed to be
counterintuitive because in the branched model a larger
number of chemical states is explored, and one could expect
stronger stochastic fluctuations. To understand this, one might
recall that the effective transition rate r (see eq 25) is smaller
for the model with branches, at least for the parameters that we
are using. This suggests that the system with branching
transitions fluctuates less between the effective discrete states
(Figure 6b) than the system that follows the sequential
mechanism (Figure 1b). This is the reason for smaller
fluctuations in the mean reaction times for the system with
branching transitions.
We developed a simple theoretical approach to analyze the

reaction dynamics of chemical reactions on heterogeneous
catalysts with multiple active sites. Our theoretical method is
based on a discrete-state stochastic description that allows us
to explicitly evaluate dynamic properties of the system via
stationary-state and first-passage probability density calcula-
tions. We investigated two different chemical reaction
mechanisms occurring at each active site of the nanocatalyst.
Specifically, we concentrated on analyzing the mean reaction
times and the randomness parameter that describes the degree
of stochastic fluctuations in the underlying chemical processes.
It is found that the mean reaction times are proportional to the
number of intermediate states (M) and inversely proportional
to the number of active sites (N). The effect of varying the
parameters N and M is more complex for higher moments of
the reaction times. We also found that the randomness
parameter, which is a measure of stochastic fluctuations in the
system, nonmonotonically depends on the number of
intermediates, while it is always increasing with the number
of active sites. We predict and explain why the maximal
stochastic noise is observed for chemical reactions with only
one intermediate state. In addition, when the chemical
reactions involve reversible off-pathway branching transitions,
the same qualitative behavior as for the model without
branches is observed. But both the mean reaction times and
the randomness are higher. These observations are explained
by the fact that in the branched model more chemical states
are visited, increasing the time needed to complete the
chemical reaction at the given site. However, the increased
randomness for the model with branches corresponds to

smaller stochastic fluctuations, which is explained by smaller
transition rates between the effective chemical kinetic states of
the system. We also suggest that the explicit results for
dynamic properties in our theoretical approach can be viewed
as bounds for the dynamic properties of the real catalytic
systems. Furthermore, the obtained scaling results of dynamic
properties as the function of number of active sites or number
of intermediates are expected to hold for more general
chemical reaction mechanisms. We also show explicitly how
our theoretical analysis can be applied to obtain the important
microscopic information for the underlying chemical processes.
While the presented theoretical model can be fully solved

analytically, giving a better understanding of the molecular
mechanisms of chemical reactions on catalysts, there are many
simplifying assumptions in our model that restrict its direct
application for analyzing the experimental data. The model
neglects the backward chemical transitions, and it also assumes
that all chemical transition rates are the same. It will be
important to generalize this simple approach to make it more
realistic while still being able to solve it explicitly because this
provides a better understanding of the microscopic picture in
catalytic reactions. Testing the scaling predictions with various
experimental methods will be also an important step in
clarifying the complex mechanisms of chemical reactions on
heterogeneous catalysts.
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