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The mechanisms of molecular motors transport are important for understanding multiple

biological processes. Recent single-molecule experiments indicate that motor proteins myosin V

moves along protein filaments via a complex biochemical pathway that consists of sequentially

coupled linear and parallel two-chain segments. We investigate analytically the corresponding

discrete-state stochastic divided-pathway model for molecular motors transport. Explicit

expressions are obtained for velocities and dispersions. The dynamic properties of motor proteins

in the divided-pathway model are compared with those in single-chain linear and parallel-pathway

stochastic models. It is argued that modifying biochemical pathways has a strong effect on the

dynamic properties, and it allows motor proteins to be more flexible in performing their

biological functions.

1. Introduction

Functioning of living systems relies to a large degree on

effective biological transport processes that are supported by

several classes of special enzymatic molecules, known as motor

proteins or molecular motors.1–5 These molecules transform

chemical energy into mechanical motion in order to move

objects in cells. Although full understanding of mechanisms

that govern molecular motors is not yet available, a significant

progress has been achieved in recent years with the develop-

ment of single-molecule experimental techniques.6–14 These

experimental studies suggest that motor proteins move in

effectively one-dimensional manner along rigid protein

filaments or along DNA and RNA molecules, and their

motion is fueled by hydrolysis of adenosine triphosphate

(ATP) or related compounds.

Striking observations coming from single-molecule experi-

ments stimulated significant development of multiple theoretical

approaches for understanding motor proteins transport.5,15–31

The most fundamental problem associated with the motion of

motor proteins is how the chemical energy of hydrolysis is

transformed into the mechanical work. Several theoretical

ideas have been proposed to explain unusual dynamic proper-

ties of molecular motors. One of them utilizes the concept of

thermal ratchets where motor proteins are viewed as Brownian

particles diffusing in periodic asymmetric potentials and

switching between them stochastically.5,16,18,21 An alternative

approach utilizes discrete-state stochastic models where the

motion of motor protein molecules is associated with biochemical

transitions between different states.5,15,17,19,24,27–31 Although both

theoretical approaches provided important details on mechanisms

of motor proteins, it seems that discrete-state chemical kinetic

models are more flexible for analysis and they can better account

for available single-molecule experimental data.5

The dynamics of most motor proteins is typically described

using the simplest linear sequential discrete-state stochastic

model.5 According to this model, the motor protein molecule

moves along a linear periodic track that corresponds to a

biochemical pathway of motor protein catalyzing hydrolysis

of ATP. Each site on the track describes a different state of the

motor protein, and the molecular motor can move between

neighboring sites with corresponding chemical transition rates.

This representation effectively maps the model into a discrete

biased random walk on a periodic one-dimensional lattice, and

it allows one to use the method of Derrida5,32 to obtain exact

and explicit formulae for the asymptotic stationary drift

velocity,

V ¼ lim
t!1

dhxðtÞi
dt

: ð1Þ

and for dispersion (or effective diffusion constant),

D ¼ 1

2
lim
t!1

d

dt
½hx2ðtÞi � hxðtÞi2�: ð2Þ

In addition, other important dynamic properties, such as stall

forces, run lengths and dwell times, could also be explicitly

calculated.5,17 This model has been used successfully for

analyzing dynamics of kinesin motor proteins.20 However,

recent single-molecule experiments on another motor protein,

myosin-V, suggest that its mechanisms of functioning are more

complex.9 Baker et al.9 have proposed a so-called ‘‘divided-

pathway’’ model to describe the motion of molecular motors.

The model is graphically presented in Fig. 1a, and it can be

viewed as two parallel multi-state pathways that follow

together part of the period between neighboring binding sites

but then diverge: see Fig. 1a. It was argued that myosins V

utilize this complex mechanism in order to ensure robust

processivity under different physiological conditions in cells.9

It is quite possible that the divided-pathway mechanism might

also be utilized by other motor proteins, although there are no

experimental confirmations yet.

Preliminary theoretical calculations for the specific divided-

pathway model with 6 states have been already presented,9

although only velocity has been computed. A more generalDepartment of Chemistry, Rice University, Houston, TX 77005, USA
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method of analysis of the divided-pathway model for any

number of states, that utilizes a graphical reduction algorithm,

was recently presented by Tsygankov and Fisher.28 This

systematic approach allows one to explicitly obtain expres-

sions for mean occupation times in individual biochemical

states, for the probabilities of forward and backward steps, for

the mean dwell times and for the velocities. However, this

method does not allow to calculate higher moments of motion

such as dispersions. A different approach for computing

dynamic properties of motor proteins in the divided-pathway

models has been proposed by Chemla et al.31 This general

method is based on solving master equations in Fourier–

Laplace space, and it allows to derive mean velocities,

fluctuation-related parameters and the dwell-time distribu-

tions. However, the formalism is mathematically quite

involved and analytical calculations can only be performed

for the divided-pathway model with a small number of states

and with some irreversible transitions. For larger systems and

more realistic reversible transitions between biochemical states

only numerical calculations can be accomplished. However,

for understanding the mechanisms of molecular motors that

follow the divided-pathway model full analytical description

would be the most useful. In this paper, we present a general

method of obtaining explicit analytical expressions for all

dynamic properties of motor proteins in the divided-pathway

model. Our approach utilizes Derrida’s method32 of calcula-

tions, and it maps the divided-pathway model into a parallel-

chain model for which exact analytical results have already

been derived.5,19

2. Theoretical model and results

We consider a motion of a single molecular motor in the

divided-pathway model that is illustrated in Fig. 1a. The

model can be viewed as a sequential combination of a linear

segment and a loop of two parallel pathways. The linear

segment consists of N0 states, while the upper (1) and lower

(2) parallel pathways have N1 and N2 biochemical states,

respectively. From the state i along the linear segment the

molecule can move to the state (i+ 1) with transition rate u(0)i ,

while it can also step backward to (i � 1) at rate w(0)
i . After

reaching the stateN0 the particle can diffuse along the upper or

lower pathway with forward and backward transition rates

given by u(m)
i and w(m)

i (m = 1 for the upper segment and

m = 2 for the lower part), respectively. We assume that the

spatial distance along the linear segment (0) from the state 0 toN0

is d0, while the spatial displacement of two parallel loops is given

by d1. The total step-size of the period in the divided-pathway

model (which is the same as the distance between corresponding

binding sites on the lattice) is equal to d = d0 + d1.

Assume that at t = 0 the molecular motor starts at l = 0

site. The probability of finding the motor protein molecule at a

site l in the biochemical state j ( j = 0, . . ., N � 1) on the

segment (m) [m = 0, 1 or 2] at time t is defined by a function

P(m)
j (l,t). Then, the dynamics of the system is governed by

a system of master equations for the evolution of these

probability functions,

dP
ðmÞ
j ðl; tÞ
dt

¼ u
ðmÞ
j�1P

ðmÞ
j�1ðl; tÞ þ w

ðmÞ
jþ1P

ðmÞ
jþ1ðl; tÞ

� ðuðmÞj þ w
ðmÞ
j ÞP

ðmÞ
j ðl; tÞ;

ð3Þ

for j a N0. The state N0 where the linear segment is coupled

with two parallel segments is a special one since it belongs to

all three segments. Here the master equation has a

different form,

dPN0
ðl; tÞ

dt
¼ u

ð0Þ
N0�1P

ð0Þ
N0�1ðl; tÞ þ w

ð1Þ
N0þ1P

ð1Þ
N0þ1ðl; tÞ

þ w
ð2Þ
N0þ1P

ð2Þ
N0þ1ðl; tÞ � ðu

ð1Þ
N0
þ u

ð2Þ
N0
þ w

ð0Þ
N0
ÞPN0
ðl; tÞ:
ð4Þ

We are interested in stationary-state (t - N) dynamics when
dP
ðmÞ
j
ðl;tÞ

dt ¼ 0. Then eqn (4) simplifies into

0 ¼ u
ð0Þ
N0�1P

ð0Þ
N0�1 þ w

ð1Þ
N0þ1P

ð1Þ
N0þ1 þ w

ð2Þ
N0þ1P

ð2Þ
N0þ1

� ðuð1ÞN0
þ u

ð2Þ
N0
þ w

ð0Þ
N0
ÞPN0

;

ð5Þ

Fig. 1 (a) A general schematic view of the divided-pathway model.

The linear segment (pathway 0) has N0 states, the upper segment

(pathway 1) has N1 states, and the lower segment (pathway 2) has N2

states; (b) an effective view of the divided-pathway as two linear chains

with one common state N0; (c) a parallel-chain discrete stochastic

model.
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which can be rearranged into the following equation,

ðuð0ÞN0�1P
ð0Þ
N0�1 � w

ð0Þ
N0
PN0
Þ ¼ ðuð1ÞN0

PN0
� w

ð1Þ
N0þ1P

ð1Þ
N0þ1Þ

þ ðuð2ÞN0
PN0
� w

ð2Þ
N0þ1P

ð2Þ
N0þ1Þ:

ð6Þ

The stationary flux across each segment can be defined as

J(m) = u(m)
j P(m)

j � w(m)
j+1P

(m)
j+1. (7)

Then eqn (6) can be written as

J(0) = J(1) + J(2), (8)

which is the expected condition of stationarity of the current.

This result suggests that the steady-state probability of finding

the particle at any site on the linear segment can be written in

the following way,

P(0)
j = P(1)

j + P(2)
j , (9)

for i = 0,. . .,N0. Note that these functions P(m)
i (m = 1,2)

satisfy the following conditions for the linear segment of the

pathway,

J(m) = u(0)j P(m)
j � w(0)

j+1P
(m)
j+1. (10)

This result is important since it indicates that the divided-

pathway model can be mapped exactly into a model with two

parallel pathways that have a common junction site, as

shown in Fig. 1b. The meaning of functions P(m)
i (m = 1,2)

for i = 0,. . .,N0 is then clear: they are probabilities to find

the particle in the corresponding states of the model plotted

in Fig. 1b. In one pathway states are running from 0 to

N0 + N1 � 1, while in the second one states start at 0 and

end up at the state N0 + N2 � 1. The state N0 is the common

state for both pathways: see Fig. 1b. Our system is periodic,

and motor protein dynamics should not depend on where the

period starts. Let us shift the beginning of the period by N0

sites, and we obtain the scheme shown in Fig. 1c with the

common state being i = 0. These arguments show that the

divided-pathway model is exactly equivalent to the parallel-

chain discrete-state stochastic model with the shifted origin,

for which all dynamic properties have already been explicitly

calculated.19

Utilizing analytical results for the parallel-chain model,19 it

can be found that for the divided-pathway model the formal

expression for the drift velocity consists of two terms, each

corresponding to the currents across the pathways (1) and (2),

V = V1 + V2, (11)

with

V1 ¼ d

1�
QN0þN1�1

j¼0
w
ð1Þ
j

u
ð1Þ
j

� �� �

R1 þ
r
ð1Þ
0

r
ð2Þ
0

R2 � r
ð1Þ
0

� � ; ð12Þ

and

V2 ¼ d

1�
QN0þN2�1

j¼0
w
ð2Þ
j

u
ð2Þ
j

� �� �

R2 þ
r
ð2Þ
0

r
ð1Þ
0

R1 � r
ð2Þ
0

� � ; ð13Þ

where the auxiliary functions are given by

R1 ¼
XN0þN1�1

j¼0
r
ð1Þ
j ; r

ð1Þ
j ¼

1

u
ð1Þ
j

1þ
XN0þN1�1

k¼1

Yjþk
i¼jþ1

w
ð1Þ
i

u
ð1Þ
i

 !" #
;

ð14Þ
and

R2 ¼
XN0þN2�1

j¼0
r
ð2Þ
j ; r

ð2Þ
j ¼

1

u
ð2Þ
j

1þ
XN0þN2�1

k¼1

Yjþk
i¼jþ1

w
ð2Þ
i

u
ð2Þ
i

 !" #
:

ð15Þ
It should be noted that for j = N1,. . .,N0 + N1 � 1 for the

pathway (1) and for j = N2,. . .N0 + N2 � 1 for the pathway

(2) we have

u(1)j = u(2)j = u(0)j , w(1)
j = w(2)

j = w(0)
j . (16)

In a similar way we can write the expressions for dispersion in

the divided-pathway model. However, because these expres-

sions are quite bulky we will not present them here, but one

can find them in ref. 19.

It is important to point out that our approach allows to

obtain exact solutions for all dynamic properties of the system

that contains a kinetic cycle, and it does not depend on the fact

that the kinetic parameters within the cycle might not satisfy

the detailed balance.19 The application of Derrida’s method is

successful here because the system can be viewed as coupled

periodic one-dimensional pathways, but inside the period all

channels are independent of each other.

3. Comparison with other discrete-state models

One can argue that the ability of motor proteins to change the

underlying biochemical pathways allows them to perform their

biological functions in the most effective and robust way. In order

to illustrate this, it is interesting to compare dynamic properties of

the divided pathway model with other models of motor protein’s

transport. For simplicity we compare the velocities and disper-

sions for the simplest divided-pathway model with N0 = 1,

N1 = 1 and N2 = 1 with the parallel-pathway model with

2 states at each segment and with the single-chain model with

N = 2 states, as shown in Fig. 2. We assume that

u(1)0 = u(2)0 = u0 and u(1)1 = u(2)1 = u1 and all the backward

rates are equal to zero. The distance between neighboring

binding sites is given by d.

For the divided-pathway model the expression for the drift

velocity yields from eqns (11), (12), (13)

VDPM ¼ d
2u0u1

2u0 þ u1
; ð17Þ

Fig. 2 Simplest discrete-state stochastic models with 2 states and

irreversible forward transitions: (a) the divided-pathway model; (b) the

parallel-pathway; and (c) the single-chain model.
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while the velocity for the parallel-pathway model is,

VPPM ¼ d
2u0u1

2u1 þ u0
; ð18Þ

and for the single-chain model we have

VSC ¼ d
u0u1

u1 þ u0
: ð19Þ

In the limit when u0 c u1 one can easily obtain

VDPM = VSC = du1 o VPPM = 2du1. (20)

In another limit, u11 c u0, the expressions change to

VPPM = VSC = du0 o VDPM = 2du0. (21)

Also, for u0 = u1 = u we derive

VDPM = VPPM = 2
3 du 4 VSC = 1

2 du. (22)

Similar calculations can be performed for dispersions of the

discrete-state models presented in Fig. 2. The diffusion

constant for the divided-pathway model is

DDPM ¼
d2

2

2u0u1ðu21 þ 4u20Þ
ð2u0 þ u1Þ3

; ð23Þ

and for the parallel-pathway the expression is

DPPM ¼
d2

2

2u0u1ðu20 þ 4u21Þ
ð2u1 þ u0Þ3

; ð24Þ

while for the single-chain we have

DSC ¼
d2

2

u0u1ðu20 þ u21Þ
ðu0 þ u1Þ3

: ð25Þ

For the case of u01 c u1 one can show that

DDPM ¼ DSC ¼
d2

2
u1oDPPM ¼ d2u1: ð26Þ

In the other limiting case, u11 c u0, we derive

DPPM ¼ DSC ¼
d2

2
u0oDDPM ¼ d2u0: ð27Þ

Finally, for u0 = u1 = u dispersions are the following,

DDPM ¼ DPPM ¼
5d2

27
u4DSC ¼

d2

8
u: ð28Þ

These results can be explained by using simple arguments.

From. Fig. 2 we might conclude that for large u0 the molecular

motor will be mostly in state 1 in all three models, while

for large u1 the most probable is state 2. Note also that

these calculations indicate that even a slight change in the

topology of the underlying biochemical pathways leads to

significant modifications in all dynamic properties. It can

be better seen in calculating a randomness parameter r,

defined as follows,

r ¼ 2D

dV
: ð29Þ

It was shown before5 that this function play a very important

role in the analysis of motor proteins single-molecule experi-

mental observations as a measure of fluctuations. Combining

eqns (17), (18), (19) and eqns (23), (24), (25), we obtain for

three models from Fig. 2 the following expressions for the

randomness parameters,

rDPM ¼
u21 þ 4u20

ð2u0 þ u1Þ2
; rPPM ¼

u20 þ 4u21

ð2u1 þ u0Þ2
; rSC ¼

u21 þ u20

ðu0 þ u1Þ2
:

ð30Þ

In Fig. 3 randomness parameters for different models are

presented for some sets of parameters. It can be seen that

underlying biochemical pathway has a strong effect on the

dynamic behavior of molecular motors.

The importance of specific biochemical pathways for

molecular motors can be illustrated by using experimental

observations on dynamics and processivity of myosin V

motor proteins.9 Single-molecule analysis of the movements

of individual myosin V indicated that two heads of the motor

protein molecule communicate through complex cooperative

mechanisms that involve divided pathways.9 A suggested

biochemical multi-pathway kinetic model is presented in

Fig. 4a. According to this scheme, the transition from state

5 to state 1 describes the binding of ATP molecule to the

motor protein, the transitions between states 1 and 4, and 2

and 5 correspond to the release of inorganic phosphate, while

the dissociation of ADP is given in the transitions between

states 4 and 5, and 1 and 2.

By applying the results (11), (12) and (13) to this model it

can be shown that the velocity is given by

V ¼ 2d
ð1þ ½ADP�=KD2Þ

kT2½ATP�
þ 1

k1
þ 1

vc
þ 1

k2
þ 1

K�D2

� ��1
;

ð31Þ

where d = 36 nm is a step-size for this motor protein,

vc ¼
1

1
k�D1
þ ½ADP�

KD1k2

; ð32Þ

and KD1 = k�D1/k+D1, KD2 = k�D2/k+D2. It should be noted

that our equation for the velocity deviates slightly from the

corresponding expression obtained in ref. 9 due to different

definitions of the probability of taking a specific pathway. The

experimentally observed velocity as a function of [ADP] is

presented in Fig. 4b. The best fit of all experimental data to

Fig. 3 Randomness parameters r as a function of the transition rate

u1 for u0 = 10.
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the divided-pathway model in Fig. 4a yields the following

parameters:

kT2 = 0.05 � 106 M�1 s�1; k�D1 = 35 s�1;

k�D2 = 60 s�1; k1 = 20 s�1; k2 = 5700 s�1;

KD1 = 1 mM; KD2 = 60 mM. (33)

These values for the kinetic parameters are similar to the

numbers obtained by Baker et al.9 The predictions of different

stochastic models with the same kinetic parameters as given by

eqn (33) are shown in Fig. 4b. It can be seen that single-

pathways models differ significantly from the divided-pathway

model results. The velocities predicted by the parallel-pathway

and the divided-pathway models are closer, but still deviate

from each other, especially at very low and at moderate

concentrations of ADP. It can also be shown that the divided-

pathway model provides the best overall fit to all experimental

data. Thus, the comparison of different discrete-state stochastic

models for analysis of experimental single-molecule data

support our conclusion that the specific biochemical pathways

determine the dynamic properties of motor proteins.

4. Summary and conclusions

We presented a general theoretical method for calculating all

dynamic properties of motor proteins that follow the divided-

pathway model, i.e., the model that is made of linear and

parallel-chain segments coupled together sequentially. Our

approach is based on the observation that the stationary

current in the system consists of two terms corresponding to

fluxes along each channel. Then it allows us to map exactly the

divided-pathway model into the parallel-chain discrete-state

model which has already been exactly solved earlier. This

mapping produces explicit expressions for drift velocities and

dispersions. It should be noted, however, that the divided-

pathway model and the parallel-pathway models are not

identical, and therefore they do not produce the same dynamic

properties. We also analyze the dynamic properties of stochastic

models of molecular motors with different topologies in

biochemical transitions. The comparison of different

discrete-state stochastic models with available experimental

observations is also presented. Our analysis points out that the

underlying biochemical pathways strongly define the dynamic

properties of motor proteins. It could be suggested that nature

might use tuning of biochemical pathways for producing very

efficient and robust motor proteins. Our theoretical method

provides a possible framework for analyzing the complex

dynamics of molecular motors in biological systems.

It would be interesting to test our results by investigating the

mechanisms of motility in myosin V and other motor proteins

that might follow the divided-pathway model. It would

require, however, high-resolution experiments that can measure

not only velocities but also other dynamic properties such as

dispersions and stall forces. Connecting the underlying bio-

chemical pathway with observed dynamic properties will lead

to better understanding of mechanisms of motor protein

functioning.
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