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ABSTRACT: Molecular dynamics computer simulation methods are very important for understanding mechanisms of chemical,
physical, and biological processes. The reliability of molecular dynamics simulations strongly depends on the integration schemes
used in the simulations. In this work, we developed new rigid body integration schemes for molecular dynamics simulations. Our
approach is based on a numerically exact solution to the free rigid body problem, which is used in the classical propagator splitting
scheme. We use the Taylor series expansion of rotational dynamical variables in conjunction with the recursive solution for higher
order derivatives of these variables. Such an approach is computationally very efficient, robust, and easy to implement, and it does
not employ Jacobi elliptic functions, while still providing the numerically exact solution of the free rigid body problem. Our studies
showed that the new integration methods have long-time stability and accuracy properties which are comparable to those of existing
symplectic integrators. The extension to the case of a canonical ensemble is also developed, allowing one to perform simulations at
constant temperatures.

1. INTRODUCTION

Molecular dynamics (MD) methods are popular theoretical
tools for studying systems of various kinds, ranging from
proteins,1�4 membranes,5�7 and ion channels8,9 to self-assembled
monolayers,10�13 interfacial systems,14�17 crystalline objects,18,19

and biological20 and artificial21�23 nanomachines. They rely on
the classical mechanical description of the system temporal evo-
lution as well as on the all-atomic description of the inter- and
intramolecular potentials. This however implies that many inter-
actions should be computed explicitly at every step of the MD
algorithm. On the other hand, many degrees of freedom of the
molecular complex under consideration might not be important
for its dynamics and other properties. Therefore, in order to
avoid unnecessary expensive calculations, one may combine sev-
eral atoms in rigid fragments and describe the motion of such
fragments in contrast to the motion of all individual atoms. Such
an approach is known as rigid body molecular dynamics
(RBMD). Thus, RBMD neglects some internal degrees of free-
dom while significantly accelerating calculations of dynamics
properties of involved molecules.

In the RBMD method, the motion of rigid bodies comprising
the systems is computed explicitly, including both translational
and rotational (orientation) degrees of freedom. The evolution
of the translational variables (position of the central of mass and
the translational momentum) is usually calculated in the same
way as in the all-atomic MD method using Verlet-like schemes.
The most challenging part of the computation of dynamics of
the rigid bodies is related to a solution for rotational variables
(e.g., angular momentum and the attitude matrix).

Several RBMD methods have been developed recently.24�34

Most of them were constructed in such a way that they have
important geometric properties of corresponding evolution
operations (mapping), such as symplecticity, time reversibility,
or both. The properties mentioned are usually the consequence

of the propagator construction, based on Trotter decomposition35,36

of the corresponding Liouville operator. It should be noted that
although such a scheme always generates the time reversible
mapping, it is not necessary that the mapping always be symplectic.

Using the Trotter decomposition technique, the rigid body
dynamics problem is usually decomposed into two parts—the
torque-free (or just free) rigid body (FRB) problem and the rest
of problem, which includes the effect of forces and torques. The
solution of the latter part is usually the same for most of the
methods. The diversity of RBMD methods is due to various
approaches to solve the FRB problem. This may be achieved by
five rotations,24 four rotations and the Rodrigues formula,25,30

rotations in quaternion space,25,28 as well as use of the fact that
this problem is analytically solvable in terms of Jacobi elliptic
functions.26,27,33,34 It should be noted that there are some other
techniques31 that do not split the FRB problem from the part
which includes the effect of the forces and torques.

The analytic solution of the FRB problem, utilizing the Jacobi
elliptic functions, is obviously one which should be chosen due to
its exact nature. However, its implementation is quite elaborate
because of the necessity to consider many special cases, which
may arise from one or another set of initial conditions and
properties of the inertia tensors of the rigid bodies. Moreover,
although there are various libraries which implement the Jacobi
elliptic functions and integrals, they may introduce some code
dependencies, which are not always desirable. In addition, use of
such functions may require extra calculations to be preformed.
On the contrary, although approximate, the methods based on
five or four rotations are more easy to implement and more
robust to the choice of initial conditions of properties of the rigid
bodies as well as cheaper to calculate.
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Here, we report the robust and easy-to-implement method for
solving the FRB problem with machine precision. It relies only
on recursive relations defined by Euler equations and does not
employ any special functions. This might be advantageous in
many situations. It is important to note that our methodmight be
considered simultaneously both symplectic and time-reversible.
The time reversibility immediately follows from the propagator
construction. Although the symplecticity does not follow from
the method structure, it is a consequence of the exact nature of
the solution (if properly converged).

We also extend our method as well as some of those reported
recently for the case of theNVT ensemble by combining themwith
Nose�Poincare thermostat.37�39 Finally, the case study of a water
cluster is used to evaluate and compare different integrators.

2. METHOD

2.1. NVE Ensemble. One of the outstanding methods for
developing the rigid body molecular dynamics integrators is a
symplectic splitting technique.40�43 It leads to time-reversible
and symplectic (usually, but not always) integrators, which are
necessary for performing long-time simulations. Furthermore,
one of the common splitting ways is to divide the full Hamilto-
nian (H) of the system of interest into a Hamiltonian of the free
rigid body (h1) and an additional Hamiltonian of interactions
(h2):

H ¼ h1 þ h2

h1 ¼ Tð pBN , lB
NÞ

h2 ¼ ϕð rBN ,ANÞ
ð1Þ

where T(pB
N,lBb,N) is a kinetic energy term that depends on

momenta of the rigid body centers of mass pB
N � {pBi},i ∈

1�N, and the angular moment of the rigid bodies lBN � {lBi},i ∈
1�N, and ϕ(rB

N,AN) is a potential energy term that depends on
the positions of the rigid body centers of mass rB

N � {rBi}, i ∈
1�N, and the orientations (attitude matrices) of the rigid bodies
AN � {Ai}, i ∈ 1�N.
Then, the full evolution operator can be factorized:

eiLdt = eiL2(dt)/2eiL1dteiL2(dt)/2 + O(dt3), where

iL : H f iL
iL ¼ iL1 þ iL2
iL ¼ f 3 ,Hg, iL1 ¼ f 3 , h1g, iL2 ¼ f 3 , h2g

ð2Þ

are the Liouville operators for corresponding Hamiltonians and
{ 3 ,H} denotes the Poisson bracket generated byHamiltonianH.
In other words, it is possible to split the torqued rigid body

problem into the free rigid body problem (FRB) and a perturba-
tion term24 (Figure 1).

The equations in Figure 1 can be solved separately. As one can
see, the equations (Figure 1a) are the FRB problem, which can be
solved in different ways. Existing methods to solve the FRB
problem have been discussed in the Introduction. The symplectic
splitting scheme of van Zon26 is especially interesting, because it
essentially provides the exact solution to this problem. However,
for the correct functioning, many special cases must be treated
carefully, including permutations of the axes to satisfy certain
conditions. Moreover, the method relies on the set of special
functions, which might be expensive to calculate, and it might
lead to the additional source of rounding errors.
Another possible solution to the FRB problem is to use the

Taylor expansion of both angular momentum {lBi}, i ∈ 1�N, and
direction vectors {uBi}, i ∈ 1�N (which specify the rigid body
orientation) in the evolution time:

lBα ðt þ dtÞ ¼ ∑
N

n¼ 0

lBα
ðnÞðtÞ
n!

dtn þ OðdtN þ 1Þ,α ∈ x, y, z

uBαðt þ dtÞ ¼ ∑
N

n¼ 0

uB
ðnÞ
α ðtÞ
n!

dtn þ OðdtN þ 1Þ,α ∈ x, y, z

lB
ðnÞ
α � dn lBα

dtn
, uB

ðnÞ
α � dn uBα

dtn
,α ∈ x, y, z ð3Þ

Here, we use the fact that the attitude matrix is essentially a set
of three orthogonal direction vectors:
AIfe = (uB1 uB2 uB3). Then, the evolution of each of these vectors

might be directly obtained using the rigid-body Poisson
bracket:44

fF,Gg ¼ � lB 3 ð∇ lBF � ∇ lBGÞ
� uB 3 ð∇ lBF � ∇ uB

G�∇ lBG� ∇ uB
FÞ ð4Þ

which explicitly can be written as

_u! ¼ f uB,H1g ¼ uB 3 ð∇ lBH1 � ∇ uB
uBÞ S

_u! ¼
0 ωz �ωy

�ωz 0 ωx

ωy �ωx 0

0
BB@

1
CCA uB ð5aÞ

_
l
! ¼ f lB,H1g ¼ � lB 3 ð∇ lB lB� ∇ lBH1Þ S

_lx
_ly
_lz

0
BB@

1
CCA

¼
αlylz
βlxlz
γlxly

0
BB@

1
CCA ð5bÞ

where

ωx

ωy

ωz

0
BB@

1
CCA ¼

Alx
Bly
Clz

0
BB@

1
CCA and α ¼ C� B, β ¼ A� C, γ ¼ B� A

ð6Þ
Equation 5a corresponds to the equation of Figure 1a for the

attitude matrix, while eq 5b is nothing else but the Euler equation
for the free rigid body.

Figure 1. Equations of motion generated by sub-Hamiltonians (a) h1
and (b) h2.
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In order to use eqs 3, one must calculate the corresponding
derivatives of the angular momenta as well as those for direction
vectors up to the desired expansion order. This may easily be
done employing the special structure of the equations of motion,
which for convenience may be written as

_lx ¼ αlylz
_ly ¼ βlxlz
_lz ¼ γlxly
_ux ¼ Clzuy � Blyuz
_uy ¼ � Clzux þ Alxuz
_uz ¼ Blyux � Alxuy

ð7Þ

Using the Leibniz rule, we can see that each n-th derivative of
each variable (lB, uB1,uB2, uB3) may then be expressed via derivatives
of other variables up to the order of (n � 1):

ðlxÞðnÞ ¼ ð_lxÞðn � 1Þ ¼ α ∑
n � 1

i¼ 0
Ci
n � 1ðlyÞðiÞðlzÞðn � 1 � iÞ

ðlyÞðnÞ ¼ ð_lyÞðn � 1Þ ¼ β ∑
n � 1

i¼ 0
Ci
n � 1ðlxÞðiÞðlzÞðn � 1 � iÞ

ðlzÞðnÞ ¼ ð_lzÞðn � 1Þ ¼ γ ∑
n � 1

i¼ 0
Ci
n � 1ðlxÞðiÞðlyÞðn � 1 � iÞ

ðuxÞðnÞ ¼ ð _uxÞðn � 1Þ ¼ ∑
n � 1

i¼ 0
Ci
n � 1ðCðlzÞðiÞðuyÞðn � 1 � iÞ

� BðlyÞðiÞðuzÞðn � 1 � iÞÞ

ðuyÞðnÞ ¼ ð _uyÞðn � 1Þ ¼ ∑
n � 1

i¼ 0
Ci
n � 1ð�CðlzÞðiÞðuxÞðn � 1 � iÞ

þ AðlxÞðiÞðuzÞðn � 1 � iÞÞ

ðuzÞðnÞ ¼ ð _uzÞðn � 1Þ ¼ ∑
n � 1

i¼ 0
Ci
n � 1ðBðlyÞðiÞðuxÞðn � 1 � iÞ

� AðlxÞðiÞðuyÞðn � 1 � iÞÞ ð8Þ
where Cn

i = n!/(i!(n � i)!) are the binomial coefficients.
The first derivatives of all variables are calculated using the

initial values of the variables themselves, as defined by eqs 7.
Second derivatives may then be calculated using the first
derivatives as well as the initial values of variables and so on up
to the required order. The calculated derivatives then may be
plugged into eqs 3 to propagate variables. The length of expan-
sion may be chosen such that the last terms will be comparable to
machine precision, which will result in a numerically exact
solution of the FRB problem.We refer to the algorithm described
above as Terec (TEylor RECursive, phonetically).
The evolution of the orientation of the rigid body may also be

described in terms of unit quaternions. In that case, the second
part of eqs 7 will read

_q0 ¼ 1
2
ð�Alxq1 � Blyq2 � Clzq3Þ

_q1 ¼ 1
2
ðAlxq0 � Blyq3 þ Clzq2Þ

_q2 ¼ 1
2
ðAlxq3 þ Blyq0 � Clzq1Þ

_q3 ¼ 1
2
ð�Alxq2 þ Blyq1 þ Clzq0Þ

ð9Þ

Similarly to direction vector eqs 8, the recursive equations for
unit quaternion will read

ðq0ÞðnÞ ¼ ð _q0Þðn � 1Þ ¼ 1
2 ∑
n � 1

i¼ 0
Ci
n � 1ð�AðlxÞðiÞðq1Þðn � 1 � iÞ

� BðlyÞðiÞðq2Þðn � 1 � iÞ � CðlzÞðiÞðq3Þðn � 1 � iÞÞ

ðq1ÞðnÞ ¼ ð _q1Þðn � 1Þ ¼ 1
2 ∑
n � 1

i¼ 0
Ci
n � 1ðAðlxÞðiÞðq0Þðn � 1 � iÞ

� BðlyÞðiÞðq3Þðn � 1 � iÞ þ CðlzÞðiÞðq2Þðn � 1 � iÞÞ

ðq2ÞðnÞ ¼ ð _q2Þðn � 1Þ ¼ 1
2 ∑
n � 1

i¼ 0
Ci
n � 1ðAðlxÞðiÞðq3Þðn � 1 � iÞ

þ BðlyÞðiÞðq0Þðn � 1 � iÞ � CðlzÞðiÞðq1Þðn � 1 � iÞÞ

ðq3ÞðnÞ ¼ ð _q3Þðn � 1Þ ¼ 1
2 ∑
n � 1

i¼ 0
Ci
n � 1ð�AðlxÞðiÞðq2Þðn � 1 � iÞ

þ BðlyÞðiÞðq1Þðn � 1 � iÞ þ CðlzÞðiÞðq0Þðn � 1 � iÞÞ
ð10Þ

while the recursive relation for angular momentum will be the
same as in eq 8. This version we call qTerec (quaternion
Terec).
To facilitate the calculations described in MD simulations, the

binomial coefficients up to a required degree may be precom-
puted once and for all. Also, if the length of the expansion is not
long enough, the length of the direction vectors as well as that of
the quaternion may change. Thus, we use the renormalization of
the unit vectors (quaternion) to cure such a possible problem. It
should be noted that although the renormalization of direction
vectors will not solve the possible loss of the orthogonality, in the
quaternion approach, this is not a problem. However, in our
simulations, we have found that possible error in the orthogon-
ality of vectors has practically no effect on dynamics and its
stability and accuracy.
2.2. NVT Ensemble.All tested integration schemes (except for

Omelyan31) can be coupled to a Nose�Poincare thermostat in a
straightforward way. The algorithm of Omelyan31 due to its
leapfrog structure is less suitable for this purpose.
The Nose�Poincare thermostat is introduced via an extended

system Hamiltonian called the Nose�Poincare Hamiltonian:37

HNP ¼ s ∑
N

i¼ 1

p02i
2mis2

 !
þ ∑

N

i¼ 1

1
2s2

lB
0T
i I

�1
i lB0

i

� �"

þ ϕð rBN ,ANÞ þ p2s
2Q

þ gkBT lnðsÞ �H0

�
ð11Þ

where the primed letters denote the virtual variables and non-
primed are real variables

H0 ¼ Hð0Þ,H

¼ ∑
N

i¼ 1

p02i
2mis2

 !
þ ∑

N

i¼ 1

1
2s2

lB
0T
i I

�1
i lB0

i

� �

þ ϕð rBN ,ANÞ þ p2s
2Q

þ gkBT lnðsÞ ð12Þ

g is number of degrees of freedom, and kB is Boltzmann
constant.
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The Hamiltonian (eq 11) may then be decomposed onto
several sub-Hamiltonians:

HNP ¼ H0 þ H1 þ H2 þ H3

H0 ¼ s ∑
N

i¼ 1

p02i
2mis2

þ gkBT lnðsÞ �H0

 !

H1 ¼ s ∑
N

i¼ 1

Ai lB
02
x, i

2s2
þ Bi lB

02
y, i

2s2
þ Ci lB

02
z, i

2s2

0
B@

1
CA

H2 ¼ sϕð rBN ,ANÞ
H3 ¼ s

p2s
2Q

ð13Þ

Every sub-Hamiltonian gives rise to its own evolution opera-
tor:

H0ðs, pB
0NÞ f D0 ¼ ∑

N

i¼ 1

∂H0

∂ pBi
0

∂

∂ rBi

� ∂H0

∂ rBi

∂

∂ pB
0
i

 !

þ ∂H0

∂ps

∂

∂s
� ∂H0

∂s
∂

∂ps

 !
¼ ∑

N

i¼ 1

pBi
0

mis
∂

∂ rBi

 !

þ ∑
N

i¼ 1

p02i
2mis2

� gkBT lnðsÞ þ H0 � gkBT

 !
∂

∂ps

H1ðs, lB
0NÞ f D1 ¼ ∑

3

i¼ 1

_u!i
∂

∂ uBi

þ _
l
!

i
∂

∂ lBi

 ! !

þ ∂H1

∂ps

∂

∂s
� ∂H1

∂s
∂

∂ps

 !

¼ ~D þ ∑
N

i¼ 1

Ai

2s2
lB

02
x, i þ

Bi
2s2

lB
02
y, i þ

Ci

2s2
lB

02
z, i

� � !
∂

∂ps

H2ðs, rBN ,ANÞ f D2 ¼ ∑
N

i¼ 1

∂H2

∂ pBi
0

∂

∂ rBi

� ∂H2

∂ rBi

∂

∂ pB
0
i

 !

þ ∑
N

i¼ 1

∂H2

∂ lBi
0
∂

∂qi
� ∂H2

∂qi

∂

∂ lB
0
i

0
@

1
A

þ ∂H2

∂ps

∂

∂s
� ∂H2

∂s
∂

∂ps

 !

¼ ∑
N

i¼ 1
sFFi

∂

∂ pB
0
i

 !

þ ∑
N

i¼ 1
sð~τiÞ ∂

∂ lB
0
i

� ϕð rBN , qNÞ ∂

∂ps

H3ðs, psÞ f D3 ¼ ∂H3

∂ps

∂

∂s
� ∂H3

∂s
∂

∂ps

 !

¼ sps
Q

∂

∂s
� p2s
2Q

∂

∂ps
ð14Þ

Finally, the full propagator (evolution operator) may be
represented as

eDdt ¼ eD3dt=2eD2dt=2eD0dteD1dteD2dt=2eD3dt=2 þ Oðdt3Þ
eD1dt ¼ eD11dt=2e~DdteD11dt=2 þ Oðdt3Þ

ð15Þ
thus leading to the second-order factorization scheme. To build
the explicit integrator, we only have to define the action of every
composing operator.
The action of operators in D0, D2, and D11 results in the

translation of corresponding variables. The nontrivial operators
are thus D3 and ~D. The action of the first one was described by
Nose38 and may be represented as

exp½D3dt�
s
ps

 !
¼

s 1 þ ps
2Q

dt

� �2

ps= 1 þ ps
2Q

dt

� �
0
BBBB@

1
CCCCA ð16Þ

The operator ~D describes the FRB problem in scaled angular
moments. Hence, the equations of motion it generates are similar
to eqs 5a and 5b:

_u! ¼ f uB,H1g ¼ uB 3 ð∇ lB0H1 � ∇ uB
uBÞ S

_u! ¼ 1
s

0 ω0
z �ω0

y

�ω0
z 0 ω0

x

ω0
y �ω0

x 0

0
BB@

1
CCA uB ð17aÞ

_
l0
! ¼ f lB0,H1g ¼ � lB

0
3 ð∇ lB0 lB0 � ∇lB0H1Þ S

_l0x
_l0y
_l0z

0
BB@

1
CCA

¼ 1
s

αl0yl
0
z

βl0xl
0
z

γl0xl
0
y

0
BB@

1
CCA ð17bÞ

Effectively, this means that the operator e
~Ddt is equivalent to

the solution of the FRB problem for the time dt/s. This follows
from the fact that if, for some operator D = B(∂/(∂C)), the
evolution operator action is eDdt:C(t) f C(t + dt), then for
operator D0 = (1/s)B(∂/(∂C)), the evolution operator eD

0dt

action will be eD
0dt = eD(dt)/(s):C(t) f C(t + (dt)/s). Thus, the

coupling of the rigid bodies to a Nose�Poincare thermostat is
simply the application of the integrators for the NVE case for
scaled time with corresponding propagation of the thermostat
variables.
For convenience, we present now the full explicit integra-

tion scheme to perform RBMD simulations in the NVT
ensemble.
1.

eD3dt=2 :
s
ps

 !
f

s 1 þ ps
2Q

dt
2

� �2

ps= 1 þ ps
2Q

dt
2

� �
0
BBBB@

1
CCCCA ð18Þ
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2.

eD2dt=2 :

pB
0
i

lB0
i

ps

0
BB@

1
CCA f

pB
0
i þ s FBi

dt
2

lB0
i þ s~τi

dt
2

ps � ϕð rBN , qNÞdt
2

0
BBBBBB@

1
CCCCCCA ð19Þ

3.

eD11dt=2 : ps f ps

þ dt
2 ∑

N

i¼ 1

Ai

2s2
lB

02
x, i þ

Bi
2s2

lB
02
y, i þ

Ci

2s2
lB

02

z, i

 ! ð20Þ

4. FRB problem propagation with the time step dt/s, e.g.,
Terec (see eqs 8)

5. Exactly step 3
6.

eD0dt :
rBi

ps

 !

f

rBi þ
pB
0
i

mis
dt

ps þ ∑
N

i¼ 1

pB
02
i

2mis2
� gkBTðlnðsÞ þ 1Þ þ H0

 !
dt

0
BBBB@

1
CCCCA

ð21Þ

7. Update atomic coordinates; calculate forces and torques
8. Exactly step 2
9. Exactly step 1

3. RESULTS AND DISCUSSION

In order to test the developed integrators, we performed
MD simulations of the (H2O)23 cluster. The TIP3P

45 inter-
action potential was used to describe intermolecular inter-
actions. Each water molecule was treated as a separate rigid
fragment. Thus, the inclusion of intramolecular interactions
was not necessary. Each simulation runs for 107 steps, which
for a time step of 1 fs is equivalent to a 10 ns trajectory. The
initial velocity distribution corresponded to a temperature
of 250 K.

The algorithms were tested in three stages. In the first stage,
we compared the performance of both the Terec and qTerec
algorithms for different integration time steps using different
expansion sizes. The methods were characterized by two quan-
tities: the total energy trend (b quantity in eq 22a) and the total
energy standard deviation (sd(E) in eq 22b).

The former quantity describes the stability of the method and
therefore may be a quantitative measure of symplecticity of the
method. We calculated it via a linear fit of the total energy versus
trajectory time (eq 22a). It should also be noted that the sym-
plecticity of the method cannot be simply judged on the basis of
its stability. For this purpose, one should consider the phase
space volume preservation. However, in most cases, the good
stability of the method might reflect its symplecticness. There-
fore, we consider the total energy trend as the measure of
symplecticity in this sense.

The latter quantity describes how much of the total energy
fluctuates around its mean value, and thus it is a measure of the
method precision.

jEðtÞj ¼ a þ bt ð22aÞ

sdðEÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼ 1
ðEi � E̅Þ2

N

vuuut

E̅ ¼
∑
N

i¼ 1
Ei

N

ð22bÞ

For each method, we considered the expansion sizes of 5, 7,
10, 12, 15, and 20 terms. Terms are explained in Figure 2. For
each expansion size, the simulations with time steps of 0.5, 1, 2.5,
5, and 7.5 fs have been performed. The trajectory lengths varied
from 5 to 75 ns accordingly.

We found that all methods showed good stability (Figure 2a)
and accuracy properties (Figure 2b). The only exception was the
Terec5 method, where the expansion size was not enough to
achieve machine accuracy. It is interesting to note that the
qTerec5 method showed significantly better properties than its
Terec5 cousin. This is a consequence of the deorthogonaliztion
of the direction vectors during simulations in the Terec5method.
The use of a quaternion in the qTerec5 variant precludes any
problems with a possible deorthogonaliztion of the attitude
matrix, thus leading to significantly better properties.

As shown in Figure 2 for the expansions longer than five terms,
the properties of the corresponding integrators are almost
independent of the expansion size. This indicates that the
computations converge to machine precision. In some cases,
the longer expansions are in fact slightly less stable and less
precise. This may be due to accumulation of the rounding errors
when dealing with very small numbers. Thus, for future use or by
default, we chose 10 term series expansions for our methods, that
is, Terec10 and qTerec10.

All methods are stable and accurate enough for all tested time
steps except for 7.5 fs. This is clearly shown in Figure 2a,b as the
abrupt change of linear relations ln(|E|) � ln(dt) and ln(sd(E))
� ln(dt).

In the second stage, the developed integrators (namely,
Terec10 and qTerec10) have been compared to existing integra-
tion schemes which we label as DLML,24 NO_SQUISH,28

MN,30 Omelyan,31 and Jacobi.26 The first two algorithms are
known to be both symplectic and time-reversible, while the next
two are not symplectic but are time-reversible. Finally, the
method based on an analytical solution to the FRB problem
which uses Jacobi integrals of the first kind is by construction
exact, so it should in principle be both symplectic and time-
reversible as well. The comparison was based on the total energy
trend (Figure 3a) as well as on the standard deviation of the total
energy (Figure 3b).

As the comparison in Figure 3 illustrates, the Terec and
qTerec methods show the properties of the known symplectic
integrators (DLML and NO_SQUISH). The nonsymplectic
schemes differ significantly from symplectic ones in both stability
and precision. These observations are valid for different time
steps up to 5 fs. All integrators become unstable at 7.5 fs. The
properties of the Jacobi integrator are very similar to those of
symplectic schemes as well as to Terec10 and qTerec10
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algorithms. This indicates that all of them achieve the best
possible precision and stability for a given system. It should also
be stressed, that despite the algorithm used for integration of the
FRB problem, the overall order of algorithms is limited by the
smallest order in the entire decomposition scheme (that is where
the forces and torques are applied). However, as is clear from
Figure 3, the algorithm for solving the FRB problem may
significantly impact the stability of the overall algorithms as well
as its precision. Thus, it is still important to use an appropriate
integrator for the FRB part.

In addition to the quality of conservation of the Hamiltonian
(total energy) of the system under consideration, we also studied
the analogous properties of the total linear and angular momenta
of the system. This is important because the rescaling of the
direction vectors and quaternions used in Terec and qTerec
methods might potentially influence the conservation of these
quantities. Thus, we were interested in how the rescaling affects
these quantities. As we expected, the rescaling practically does
not affect either the linear or angular momenta significantly, as
long as the Taylor series expansion possesses a sufficiently large
number of terms. This may be understood in the following way:
Assume some quantity x (in our case, it may be either quaternion
of the direction vector) has an exact value of xexact and the Taylor
series approximation of xTaylor = xexact + dx, where dx is the error.

The rescaled value of xwill be xTaylor/xexact = 1 + dx/xexact. As the
number of terms in the Taylor series expansion increases, the
error goes to zero very rapidly (dx f 0). In that case, the
rescaling operation will practically be the identity operation and
thus will not have a significant impact on conserved properties.
Corresponding data are presented in Supporting Information
section S1. It shows that for a relatively small number of terms
(Terec5), the rescaling affects conservation of the total linear
momentum. However, starting from 10 terms (Terec10), it
practically has no effect on the conserved properties and is
needed only for consistency.

It should also be noted that if one wants to combine the exact
solution to the FRB problem with the torques and forces part of
the integrator, it is crucial to consider more than two possible
ways to perform Jacobi ordering used in the Jacobi algorithm as
implemented by van Zon and Schofield.26 In fact, there are six
distinct permutations of the axes, one of which may lead to
required Jacobi ordering. However, since some of such permuta-
tions are odd, one should take particular care about the direction
of time flow. The details and corresponding derivations of such
modifications to the original algorithm26 are presented in
Supporting Information section S2.

Finally, we tested the performance of the above algorithms
(except for Omelyan) in the NVT ensemble. As Figure 4 shows,

Figure 2. Comparison of the Terec and qTerec methods for different expansion sizes and different time steps. (a) energy trend, stability characteristics;
(b) standard deviation, accuracy characteristics.

Figure 3. Comparison of Terec and qTerec methods with other existing integrators for NVE ensemble: (a) energy trend, stability characteristics; (b)
standard deviation, accuracy characteristics.
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the temperature distributions are very similar for all methods and
for all time steps up to 5 fs. At dt = 5 fs, the MN integrator is no
longer stable and does not generate the correct distribution,
while other methods still perform correctly.

We also studied the stability and accuracy of the methods by
examining the properties similar to those defined in eqs 22, but
using Nose�Poincare Hamiltonian 11 instead of the total
energy. It should be noted that the quantity (eq 11) is not only

Figure 4. Temperature distribution in the NVT ensemble generated by different methods and with different integration time steps: (a) 0.5 fs, (b) 1.0 fs,
(c) 2.5 fs, (d) 5.0 fs. The target temperature was set to 250 K.

Figure 5. Comparison of Terec and qTerec methods with other existing integrators for the NVT ensemble: (a) Nose�Poincare Hamiltonian trend,
stability characteristics; (b) standard deviation, accuracy characteristics.
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the conserved quantity but is a true Hamiltonian. Thus, its trend
gives information about the symplecticity of the NVT integrator,
as the trend of total energy characterizes the symplecticity of the
NVE integrators in the sense discussed earlier. The comparison
of such quantities is presented in Figure 5.

Similarly to the NVE ensemble, one may observe two groups
of methods—one is nonsymplectic (MN in this case), and the
other group has all symplectic methods (DLML, NO_SQUISH,
Terec10, and qTerec10). In contrast to the NVE ensemble, the
properties of the integrator havemore of an effect on themaximal
integration time step for which the dynamics is still stable. As we
can see, the instability occurs for the MN integrator already at dt
= 5 fs, while such a time step is still acceptable for this method in
the microcanonical ensemble. The Terec and qTerec methods
once again show properties comparable to those of existing
symplectic integrators.

Finally, in the third stage, the performances of all methods
were compared to each other. To do this, we considered the same
system, namely, a cluster of 23 water molecules, but without any
interactions. This is necessary since the computation time of all
interactions is much larger than the time required for performing
an integration of equations of motion. That would obscure the
actual speed of the integration algorithms. In other words, we
considered a system of the 23 free rigid bodies, the motion of
which is determined by the initial distribution of angular and
linear momenta, constrained to correspond to a given tempera-
ture. In all cases, said temperature was set to 300 K. The
trajectory time was set to 5 � 106 steps with an integration time
step of 1 fs, which corresponds to 5 ns trajectories. It is important
to note that for the purposes of a speed comparison, the
trajectory length has no effect, so it could be chosen to produce
any reasonable execution time.

The results of such a comparison are summarized in Table 1.
The Terecmethod turns out to be even faster than the symplectic
decomposition scheme NO_SQUISH. This is probably because
the latter method uses many trigonometric functions for each
integration time step. Both methods in turn are slower than the
other decomposition schemes, including a quaternion version of
the Terec method (qTerec). The latter is only slightly slower
than the MN algorithm. However, the precision and stability
comparisons made in previous stages make the MN algorithm
less favorable than qTerec (and even Terec). The fastest
Omelyan algorithm also suffers from stability and accuracy
problems.

Finally, the only outlier is the Jacobi method. The execution
time for this method becomes on average 5 times slower than
that for most other algorithms. The Terec and qTerec methods
also give a numerically exact solution (sometimes the precision
and stability are even higher, see Figures 3 and 5), but for a

fraction of the cost associated with the Jacobi method may thus
be more attractive for some MD applications.

As is expected, as the expansion size increases, so do the
execution times for corresponding versions of Terec or qTerec
algorithms (Table 2). We can also note that for all expansion
sizes, the quaternion version is usually faster than the orientation
directions counterpart. This is because the first method propa-
gates only four quaternion components, while the other propa-
gates three components of the three direction vectors (that is, in
total nine components).

4. CONCLUSIONS

In this work, we reported new numerically exact methods to
solve the FRB problem that allows us to develop new integration
schemes for rigid-body MD simulations. We showed how this
approach might further be used for the construction of symplec-
tic and time-reversible integrators in bothmicrocanonical (NVE)
and canonical (NVT) ensembles. Since our approach solves the
FRB up to machine precision, it may be considered as an efficient
and easy-to-implement alternative for existing exact solution
methods, which involve Jacobi elliptic functions. Although for
big integration time steps the analytic solutions might be super-
ior, in usual MD simulations the integration time step is limited
by the highest vibration frequency in the system. As a result, in
most cases, it is practically impossible to use time steps larger
than 5 fs, and it significantly enhances the applicability of our
methods.

We showed that our integrators have characteristics not worse
(but even better in some cases) than those of existing symplectic
integration schemes for all time steps up to 5 fs. However, our
method differs from those schemes in that it solves the FRB
problem exactly (up to machine precision), and it does not need
the evaluation of the Jacobi elliptic functions. Moreover, different
special cases are treated in the same way as for general asym-
metric rigid bodies, which facilitates the implementation of the
method in computer code.

In addition, we performed a comparative study of the existing
rigid body integration schemes (integrators) focusing on their
stability, precision, and performance properties. We found that
the time-reversible and symplectic schemes of DLML and
NO_SQUISH as well as the Jacobi method based on an analytic
solution of FRB show much better properties than those
methods which are not symplectic (Omelyan, MN). For our
new integrator, the properties depend on the expansion length.
For expansion lengths as small as five terms, the integrator based
on direction vectors (Terec) shows the properties comparable to
tested nonsymplectic schemes, while the quaternion-based algo-
rithms (qTerec) show much better accuracy and stability,
comparable to those of symplectic schemes. For a bigger number
of expansion terms, the properties of both integrators become
comparable (and even better in some cases) to those of
symplectic schemes. Thus, the reported methods are effectively

Table 1. Run Time for a 5 ns Simulation of a Cluster of 23
Water Molecules

method time, s

DLML 184( 4

MN 274( 5

NO_SQUSIH 560(4

Omelyan 92( 1

Terec10 373( 3

qTerec10 289( 3

Jacobi 1406( 70

Table 2. Speed Comparisons for Different Taylor Series
Expansion Sizes for Both Terec and qTerec Methods

expansion size Terec, s qTerec, s

5 221( 1 186( 4

10 373( 3 289( 3

15 616( 9 453( 4

20 937( 7 645( 3
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symplectic (which follows from the fact that the exact solution is
by definition a symplectic mapping).

In terms of performance, our algorithms are much faster than
the Jacobi method, providing the same and even better accuracy
and stability. Moreover, our method is very robust and does not
need to consider many special cases, nor deal with some internal
(Jacobi) ordering. This makes them very easy to implement
and efficient to run. We showed that the new methods are
even faster than the existing symplectic decomposition scheme
NO_SQUISH.

Although for conventional molecular dynamics the difference
in performance of all algorithms is usually neglected by a sign-
ificantly slower interaction calculation step, it may be more
important in such methods as discrete molecular dynamics46�49

where the interactions are calculated relatively rarely and effi-
ciently. In such methods, it may be necessary to solve the FRB
problem for relatively long times. This may not be accomplished
by conventional splitting schemes, which are approximate by
construction. Using the exact method (Jacobi) described by van
Zon will solve the problem, but it would take approximately 5
times more time than with our algorithms.

We also showed that the new algorithms (as well as most of the
existing ones) may be combined with the Nose�Poincare
thermostat in a straightforward fashion. The corresponding
mappings are similar to those used for the NVE ensemble and
differ only in intrinsic scaling of the integration time step. We
demonstrated that such coupling indeed generates correct dis-
tributions for all integrators considered. Moreover, our new
integrators (Terec and qTerec) work in both NVT and NVE
ensembles and show properties comparable to those of the
existing symplectic schemes.

The advantage of our method becomes clear if one compares
each of the integrators one by one. In some cases, our method is
more stable and precise (vs Omelyan and MN); in others, it is
faster (vs Jacobi and NO_SQUISH); in still others, it is capable
of performing exact integration of the FRB problem for longer
time steps (vs all splitting schemes); in some cases, it is more
robust and easy to implement (vs Jacobi). We thus believe that
these new integrators will be useful for long time scale simula-
tions of various types of molecular systems.
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