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ABSTRACT: Intracellular transport is supported by enzymes
called motor proteins that are often coupled to the same cargo
and function collectively. Recent experiments and theoretical
advances have been able to explain certain behaviors of
multiple motor systems by elucidating how unequal load
sharing between coupled motors changes how they bind, step,
and detach. However, nonmechanical interactions are typically
overlooked despite several studies suggesting that microtubule-
bound kinesins interact locally via short-range nonmechanical
potentials. This work develops a new stochastic model to
explore how these types of interactions influence multiple
kinesin functions in addition to mechanical coupling. Non-
mechanical interactions are assumed to affect kinesin
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mechanochemistry only when the motors are separated by less than three microtubule lattice sites, and it is shown that
relatively weak interaction energies (~2 kT) can have an appreciable influence over collective motor velocities and detachment
rates. In agreement with optical trapping experiments on structurally defined kinesin complexes, the model predicts that these
effects primarily occur when cargos are transported against loads exceeding single-kinesin stalling forces. Overall, these results
highlight the interdependent nature of factors influencing collective motor functions, namely, that the way the bound
configuration of a multiple motor system evolves under load determines how local nonmechanical interactions influence motor

cooperation.

1. INTRODUCTION

The transport of organelles and many other subcellular
materials is strongly dependent on enzymes called motor
proteins that use the chemical energy released from ATP
hydrolysis to drive cargo transport along periodic cytoskeletal
filaments." Many motor proteins can move processively along
their filament tracks and can produce forces that should allow
them to transport their cargos independently as single-motor
molecules in many circumstances.>~® Nevertheless, a cargo’s
motion is often driven by teams of similar and/or dissimilar
motors that function either in a concerted fashion or
antagonistically.”~"" Collective motor functions are important
to various intracellular transport and trafficking processes, since
they can determine how fast and far cargos are transported in
the cytoplasm, the net directionality of cargo motions, and even
how cargos switch between microtubule- and actin-dependent
transport modes. Although these aspects of intracellular
transport have received increased attention, understanding the
impact of collective motor behaviors still requires improved
knowledge of how the mechanochemistry of motor proteins is
affected by motor cooperation.

Recent experimental and theoretical advances have provided
important insights into mechanisms underlying the collective
dynamics of processive motor molecules, particularly for
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multiple kinesins.'”~"” Several methods have been developed
to characterize how cargo run lengths, velocities, detachment
forces, and step sizes are influenced by the number of motors
responsible for cargo transport.'®">' Among these studies, our
group has examined the dynamic properties of structurally
organized complexes composed of two interacting kinesin
molecules using precision particle tracking and optical trapping
procedures.'>'> These studies demonstrate that small collec-
tions of kinesins can transport cargos against larger forces and
over longer distances than single kinesin molecules can produce
on their own. However, analyses of two-kinesin run lengths,
instantaneous velocities, average force—velocity relationships,
and, perhaps most importantly, transition rates between
different conformations of the two-motor system where either
one of both kinesins within a complex bear the applied load
imposed on a cargo all suggest that cargo transport by two
kinesins will primarily be driven by a single-motor molecule.
Given this behavior, the average transport behaviors of these
two-kinesin complexes are best characterized as net negative
cooperative, since they fall short of expectations from analytical
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Figure 1. (A) A schematic picture of a model for transportation of cargo by a complex of two coupled kinesin motor proteins along the microtubule.
Arrows indicate microscopic transition associated with kinesin binding, stepping, and detachment. (B) Local areas on microtubules that are affected
by interactions with kinesins: (top panel) motor proteins are far away from each other; (bottom panel) closely spaced motor species that interact

with each other.

treatments where two motors are assumed to function
noncooperatively, meaning that they simply share their applied
load equally when both kinesins are engaged in transport and
do not interact in other ways.

The ability to construct organized motor systems has also
facilitated comparisons of multiple kinesins under the different
loading conditions provided by a static optical trap and an
optical force clamp.'*** As recognized by earlier theoretical
studies,'® these analyses illustrate that the spatial and temporal
dependencies of the applied loads experienced by multiple
motor complexes can influence their ability to bind to
microtubules in configurations where loads are shared equally
between the motors.>>** For example, loads in the static trap
are found to increase rapidly compared to the rates at which the
complexes evolve from single-motor-bound states into load-
sharing configurations when cargo transport is driven by
multiple kinesins. Consequently, a cargo’s primary load-bearing
kinesin will most often experience a high force and detach from
the filament before its nonparticipating motor partner is able to
assist in cargo motion. Two-kinesin complexes are only able to
transport cargos to positions in the trap where the load exceeds
kinesin’s stalling force if they generate load-sharing states
before they arrive at this load. This spatial filtering of multiple
motor configurations therefore results in behaviors where
motors cooperate negatively at low applied loads but function
more productively via load sharing at high applied loads.
Moreover, this behavior is further reinforced by the fact that
partial cargo-filament detachment due to the release of one of
the complex’s motors results in rearward bead displacement,
which only increases the probability that the transport will
occur by a single kinesin molecule at low applied loads.

Key experimental signatures reflecting the relatively weak
dependence of cargo transport on kinesin copy number can be
reproduced by a discrete-state stochastic model that has been
developed to explore the load-dependent dynamics of multiple
kinesins.”® This model is unique since it (i) accounts for
chemical transitions between single-motor-bound and a
spectrum of two-motor-bound states where motors are spaced
by different distances on the microtubule and assume different
portions of the applied load imposed on a cargo, (ii)
parametrizes microscopic transition rates using fits to single-
kinesin optical trapping data exclusively, and (iii) examines
multiple motor dynamics via numerical calculations that
facilitate more accurate analyses of the spatiotemporal dynamics
of a multiple motor system. While illustrating that there are
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significant kinetic barriers that limit a complex’s ability to bind
the filament in configurations where both motors share their
applied load, this model also reproduces specific experimental
observations including nonmonotonic dependencies of cargo
velocities and motor-filament detachment rates on the
magnitude of the applied load, and it even provides insight
into how these unique behaviors result from the spatial and
temporal dependence of the load experienced by a cargo.'**®
Finally, this theoretical framework predicts that the collective
behavior of multiple motor proteins depends on their stepping
mechanism. It is argued that efficient and strong motors like
kinesins have greater difficulties cooperating productively
compared to weaker and less efficient motors due to the
relatively low susceptibility of kinesin’s velocity to applied
loads.”®

While the above theoretical approach is capable of capturing
various important and unique experimental observations, this
treatment assumes that multiple kinesins only interact
mechanically through the elastic linkages connecting them to
their cargo. Using this approach, the rates at which a motor
complex will transition between configurations via motor
binding, detachment, and stepping are therefore only depend-
ent on the corresponding change in a complex’s strain energy
during these transitions. There are several lines of evidence
suggesting that other forms of interactions between filament-
bound motor proteins could also play an important role in
multiple kinesin dynamics.”**’ Kinesins are found to phase
segregate into patches of dense and sparsely decorated
filaments in electron microscopy studies,”” and to pause
transiently on a microtubule when they are in close proximity
to neighboring motors that are bound in a rigor state.”® This
behavior clearly indicates some form of short-range interaction
potentials acting between microtubule-bound motor proteins.
Similarly, local interactions among kinesins are evidenced by
the clustering of kinesins along the microtubule filament even
though the tails of these motors are not coupled mechanically.
Importantly, the energy scale of these interactions was
estimated to be relatively small (~1.6 + 0.5 kzT),*° and they
are found to affect both motor-filament binding and detach-
ment in the absence of an applied load.

Outside of molecular crowding effects, the impact of such
interactions on motor stepping has largely been overlooked.”®
Nevertheless, measured velocities in the recent optical trapping
studies at loads exceeding kinesin’s stalling force are much
higher than those predicted by the models that only address
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mechanical coupling between motors, even if more than two
motors are assumed to be present on the cargo surface.”® In
fact, these velocities even appear to exceed predictions that
assume motors share their applied load perfectly when
transporting a cargo, implying some form of local interaction
may potentially allow the motors to function more synergisti-
cally in this load regime.

Herein, we extend our previous discrete-state stochastic
approach and develop a new theoretical model to examine the
influence of local, nonmechanical, interactions between kinesins
on their transport dynamics under applied loads. In particular,
we explore how these interactions affect two-kinesin velocities
and detachment rates when loads vary spatially and temporally.
The present analyses suggest that local interactions can alter
multiple motor detachment and stepping rates appreciably at
high applied loads, even if the energies of these interactions are
small. However, the overall impact of these effects is generally
superseded by other kinetic constraints that determine how the
bound geometries of a multiple motor complex evolve under
load, as well as other factors influencing the spatiotemporal
“filtering” of multiple kinesin states. From this basis, we discuss
how this behavior stems from kinesin’s efficient stepping
mechanism, and propose how similar interactions might
influence other classes of motors possessing different
mechano-chemical properties.

2. THEORETICAL METHODS

2.1. Discrete-State Stochastic Model. The present model
builds upon a theoretical method that has been developed in
refs 25 and 29. It was designed to examine the dynamics of the
two-kinesin complexes as experimentally studied in refs 12 and
13. The geometry of the two-kinesin complexes bound to cargo
and moving along microtubules as well as relevant kinetic
transitions are illustrated in Figure 1A. To describe the
structural organization of the complexes, we consider that
two kinesins are bound 50 nm apart from one another on the
surface of a S00 nm (diameter) bead. The motor—protein
assemblies can associate with the microtubule via a single
kinesin or via a range of two-motor-bound configurations
where the separation distance ! between motor-filament binding
sites varies.

Each microtubule-bound kinesin molecule at the lattice site i
can step forward (backward) with a rate u; (w;), and dissociates
with a rate k°. Unbound motors bind to the filament with a
rate k% ;) (the meaning of labels here is explained below); see
Figure 1A. These rates are specified by free-energy differences
for conformations that are connected by these transitions
following the requirement from the detailed balance conditions.
The free energy of each state is calculated explicitly assuming
that a mechanical (but not a chemical) equilibrium is achieved
in each state after individual structural transitions in the
complex are taking place.”® This energy, which we refer to as a
complex’s configurational energy (Econﬁg), is computed from
stretched motor lengths and bead-trap displacements obtained
using a mechanical modeling and energy minimization
procedure that balances the forces on the bead from the
motors and trap to within 0.1 {N 2 During this procedure, the
elasticity of each motor-bead linkage is parametrized using
measurements of single kinesin stiffnesses.’”” A complex’s
configurational energy can then be determined using the
following expression:
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where K is the trap’s spring constant, (xr — ) is the distance
by which a bead is displaced from the trap center, I, is the
length of a motor when it experiences a force along its stalk axis
(Fy), and I, is the length of an unloaded motor. The rates at
which complexes transition between configurations can then be
determined using the corresponding difference in configura-
tional energies (AEconﬁg) as explained below.

The temporal evolution of the motor protein complexes can
be described by the following set of master equations:
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In these equations, y’(t) is the probability that the system will
be found in a state where the motor protein complex is
completely detached from the microtubule at time t. Similarly,
the quantities y?(t) and y/(t) correspond to probabilities of the
single-motor-bound states where the labels a and b specify
different kinesin molecules and the labels i and j are used to
specify positions of the motors on the microtubule lattice. The
probabilities for two-motor-bound states are given by functions
l//f;f]’-)(t) for kinesin molecules a and b connected to the
microtubule at positions i and j.

Transition rates in the master equations are estimated as
follows. The detachment rate of a motor in the absence of load
(k3 = 0.312 s7") is taken from experiments,” and the unloaded
binding (k3" ) rate assumes a value of 4.7 s™' from other
experiments.”® The ratio of binding to detachment rates under
applied loads is related to the unloaded rates by the detailed
balance condition:

dx.doi.org/10.1021/jp304018b | J. Phys. Chem. B 2012, 116, 8846—8855



The Journal of Physical Chemistry B

on o
i—= (i) _ kln —PAE g
ot koffe
(i,)—i 0 (6)
where AE Econig(ii) — Econig(i) and f is equal to 1/kT;

config —

k% ) (kfi(i,j)ﬁ and k{y_; (k{i))_;) are the rates for transitioning
between specified single- and two-motor-bound configurations
via binding and detachment rates, respectively. The detachment
rate k‘(’g-)_,,- of a motor from a two-motor-bound state to a single-
motor state is estimated by considering motor detachment as a
two-state process (where the positions and energies of the
intermediate and transition states are determined from single-
motor detachment rate data).>® The detachment rates can be
calculated for different loading conditions in the optical trap.
Further, the binding rate of a motor k) can be obtained
from eq 6.

The stepping rates of the motor under applied loads are
calculated using the formalism of Fisher and Kim.>' Here,
kinesin’s reaction coordinate is approximated by a two-state
model that accounts for intermediate biochemical states and for
the work done by a motor as it transitions between spatially
separated ground and intermediate states. The corresponding
rates for these substeps can be written as

u+ = u_(:e_ﬁ(Ex,TSl_Ex) (7)
U, = u_?_+e_ﬂ(Ex,TSZ_E|‘,IS) (8)
w_= wEe_ﬁ(Ei,T&_Ei,IS) (9)
w__ = W_o_e_ﬁ(Ex,TSZ_EA+1) (10)

The unloaded stepping rates u3, uJ,, w°, and w” _ are obtained
from fits to single kinesin optical trapping data.”® E; is the
energy of the complex with the transitioning motor bound to
the ith lattice site. E;rs;, E;15, and E;1g, are transition state
energies and the energy of the intermediate biochemical state of
the transitioning motor. These energies can be estimated by
taking into account the positions of the transition states and the
intermediate state along a well-defined motor stepping reaction
coordinate.® The comgosite stepping rates used in the master
equations are given by””

U — lhy +
(i) = (i+1)) W+ U, Fw_ +w__ (1)
w_w__
Wit1 ) (i5) =
(i+1,7) = (i,j) P (12)

The above master equations are solved numerically for
probabilities of different chemical states of the two-motor
assembly using the forward Euler approximation.”® For analyses
of two-kinesin dynamics in a static optical trap, bead transport
is assumed to begin with the binding of only one of the
complex’s motors to a microtubule lattice site where the bead is
unloaded. This motor can then step forward, and the second
motor can bind to the filament depending on the rates of these
individual transitions. Bead runs are terminated when both
motors detach from the filament. This procedure is modified
for predictions of two kinesin behaviors in the force clamp in
order to mimic the loading conditions of these experiments.””
In the force clamp assays, beads are first allowed to be
transported in a static trap until the applied load reaches a
threshold force (FTrig). The load is then changed rapidly to a
specified value and held constant via a force feedback algorithm.
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To emulate these conditions, numerical calculations were
performed to determine the probabilities the complexes would
be bound in a particular configuration when the force clamp
was first activated. The resulting probabilities are then used as a
starting point for a second numerical calculation where the
applied load is held constant. For all calculations, average bead
velocities and detachment rates are weighted by the
probabilities the complexes adopt different bound config-
urations as described in ref 25.

Note also that our model does not take into account the
hard-core exclusion interactions between two motors. The
kinesin molecules are allowed to occupy the same site on the
microtubule during transport, since it does not affect many
dynamic properties of the system and it also simplifies
calculations signiﬁcantly.25 In addition, in our calculations,
there are no states where motor-cargo linkers have crossed
because the force equilibration assumption allows enough time
for these states to relax to untangled conformations.

2.2. Introducing Local Motor Interactions. Both our
experimental and theoretical analyses suggest that the two-
kinesin complexes will primarily occupy configurations where
both motors assume a substantial portion of the applied load
when the load exceeds the kinesin’s stalling force (7—8 pN),
especially in the static trap.”® This behavior is signified by
observations of attenuated bead displacement sizes (3—5 nm)
in this load regime as compared to kinesin’s 8.2 nm step.'’
Furthermore, the mechanical modeling shows that this behavior
can only be produced if the kinesins are bound to closely
spaced microtubule lattice sites, since, otherwise, only one
kinesin in the complex will bear the load and the bead motion
will resemble that of a single-kinesin molecule. Consequently,
we assume that kinesins will interact in a way that could affect
the transport dynamics when they are bound to microtubule
lattice sites that are closer than some critical separation distance
(sc). Specifically, we choose s. = 16.4 nm, which is equal to
twice the length of tubulin subunits (d = 8.2 nm) from which
the microtubules are assembled, since the strongest interaction
is expected for kinesins with tubulin subunits to which they are
connected; see Figure 1B. Local motor interactions were
therefore introduced by assuming that the microscopic
transition rates into and out of the states where the motors
are positioned at spacing less than or equal to s, would be
altered according to the methods described in the following
sections.

2.3. Local Modulation of Motor-Filament Affinities.
The influence of local interactions on motor-filament binding
and detachment rates was introduced using the treatment that
is similar to one implemented by Roos et al.”® to describe the
local clustering of kinesins on microtubule filaments, where
(attractive) interactions were found to enhance motor-filament
binding rate in the absence of load by a factor of y and
attenuate motor detachment rates by a factor of 6 when the
motors are bound to closely spaced lattice sites on the
microtubule.*® Previous estimates of these parameters were y =
1.5-2.5 and 0 = 0.3—0.6, which corresponds to a total local
interaction energy (E,,) of approximately 1.6 + 0.5 kzT. An
important distinction of our treatment is that the microscopic
binding rates (k?f)(iyj)) and detachment rates (k°,-f§)_,,-) in eq 6 are
load-dependent, since motor proteins attached to the filament
are coupled mechanically.

In the presence of mutual kinesin interactions (E,,), the ratio
of binding to detachment rates should be modified
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Figure 2. Dynamic properties of two-kinesin complexes in the model without local interactions. (A) Detachment and binding rates: experimentally
measured detachment rates are shown by circles, while blue and black curves correspond to calculated values of detachment and binding rates,
respectively. (B) Distribution of two-motor load-sharing and single-motor-bound states as a function of the load. The blue and red triangles
represent experimentally measured fractions of load-sharing and single-motor states, respectively. Calculated two-motor load-sharing and non-load-
sharing states are shown in blue and red, respectively. (C) Force—velocity relationships under static-trap conditions. Symbols correspond to
experimental measurements. Black and blue curves describe calculated values for original configurational energies and for modified configurational
energies (see text for details), respectively. (D) Force—velocity relationships for force-clamp conditions. Symbols correspond to experimental
measurements. Black and blue curves describe calculated values for original configurational energies and for modified configurational energies (see

text for details), respectively.
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where the tilde (~) labels the binding and detachment rates
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In these expressions, E;, is the local nonmechanical motor/
motor interaction energy that can be effectively split between
binding and detachment as follows:
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2.4. The Effects of Interactions on Collective Motor
Stepping. The present model also explicitly takes into account
how local interactions between kinesins affect their individual
stepping rates along the microtubule. Local interactions induce
changes in the free-energy profiles and modify the individual
substep transition rates u,, u,,, w_, and w__. The substep
transitions depend on the difference in the configurational
energies of the initial state and the final state for each substep
transition. The new substep transition rates #,, #,,, w_, and
w__, which account for these modifications in the free energy
landscapes, are related to the original substep rates as follows:
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i, = u+e_ﬂAE‘vTSl (18)
i, = u++e_ﬂ(AE‘vT52_AE""5) (19)
w_ = w_e PBBra=AEs) (20)
W__ = w__e PAEm (21)
where AE;rq; = Ejrsi — Eirsiy AEjrs; = Eirs, — Ejrsy and

AE, ;s = Ej;s — E,15. The energies of the complex with the motor
in the two transition states and the intermediate state are
denoted as E;rg), E; sy, and E5g, respectively, and the prime
labels indicate the modified energies of these states with
stepping interactions. The composite forward and backward
transition rates depicted in Figure 1A are then computed
similarly as in eqs 11 and 12 and then used in the numerical
solutions of master equations.

3. RESULTS AND DISCUSSION

The theoretical framework described above has been used to
test how local, nonmechanical interactions between elastically
coupled kinesins affect their dynamics in the presence of
applied loads. Specifically, the master eqs 2—5 were solved
numerically with and without interactions in order to compute
(i) average detachment and binding rates, (ii) the probabilities
that both motors share their applied load, and (iii) force—
velocity (F—V) relationships in both the static trap and the
force clamp. Theoretical predictions were then compared with
experimental observations to test whether including local
interactions improves the agreement between the model
predictions and experiments.">**

Characterizing the impact of local interactions on multiple-
kinesin functions ultimately requires reasonable estimates of
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Figure 3. Dynamic properties of two-kinesin complexes in the model where local interactions affect only motor-filament affinities. (A) Detachment
and binding rates: experimentally measured detachment rates are shown by circles, while blue and black curves correspond to calculated values of
detachment and binding rates, respectively. (B) Distribution of two-motor load-sharing and single-motor-bound states as a function of the load. The
blue and red triangles represent experimentally measured fractions of load-sharing and single-motor states, respectively. Calculated two-motor load-
sharing and non-load-sharing states are shown in blue and red, respectively. (C) Force—velocity relationships under static-trap conditions. Symbols
correspond to experimental measurements. Black and blue curves describe calculated values for original configurational energies and for modified by
interactions configurational energies (see text for details), respectively. (D) Force—velocity relationships for force-clamp conditions. Symbols
correspond to experimental measurements. Black and blue curves describe calculated values for original configurational energies and for modified
configurational energies (see text for details), respectively.
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Figure 4. The effect of free-energy profile changes on force—velocity relationships in two-kinesin complexes. (A) The case of no interactions (E,, =
0 and the configurational energies of two-motor-bound states are unchanged). (B) The case with local interactions (1.6 kzT) and with the
configurational energies of two-motor-bound states increased by 0.47 kyT. Symbols correspond to experimental measurements; calculated curves
describe lowering the free energy of the first transition state (red); or second transition state (blue), or increasing the energy of intermediate state
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how the free energy (Econﬁg) of a complex changes when it significance of these factors (Figure 2). From this basis, the
transitions between different filament-bound conformations impact of local, nonmechanical interactions on multiple kinesin
due to the binding, detachment, and stepping of individual dynamics was then characterized using the model framework
motors within a complex. These energies were previously described in the Theoretical Methods section (Figures 3 and
parametrized via analyses of single-motor elasticity measure- 4).

ments and a mechanical modeling procedure that computes a 3.1. Evaluation of the Model without Local Inter-
complex’s configurational energy according to eq 1. While this actions. Comparisons between predictions of the model
treatment provides a reasonable approximation of the without local interactions and experimental optical trapping
configuration-dependent balance of forces between the motors data are displayed in Figure 2. As discussed in ref 25, this form
(see the Supporting Information in ref 25), Eionig is purely of the model is able to capture key features found in the optical
determined by the axial force—extension properties of the trapping data including the nonmonotonic force dependence of
kinesin-bead linkages, and it could potentially neglect the role the detachment rate, (k3%,,), describing how rapidly complexes
of other energetic terms in eq 1 that arise due to the binding detach partially from the filament (Figure 2A), and the
geometries of the complexes (e.g, rotational and torsional analogous rapid increase in average two-kinesin velocities that
strain contributions to Ewnﬁg). Consequently, we first re- are observed in the static trap when the load increases above
evaluated this treatment in order to characterize the relative kinesin’s stalling force (7.6 pN in our experiments"); see

8851 dx.doi.org/10.1021/jp304018b | J. Phys. Chem. B 2012, 116, 88468855



The Journal of Physical Chemistry B

Figure 2C. Moreover, the model also reproduces experimen-
tally measured trends in the static trap describing the load-
dependent probability that a complex will associate with the
microtubule in configurations where both kinesins share their
applied load (Figure 2B). Here, load-sharing configurations are
assumed to correspond to those where a complex’s secondary
load-bearing motor (the trailing motor) bears at least 25% of
the total applied load imposed on the bead. With this criterion,
the probability that both kinesins share their load increases
initially until the load exceeds 2 pN but then slowly decreases
with increasing load until the load approaches 7 pN, as is found
in the data. Importantly, despite the liberal definition of load-
sharing states, this probability never exceeds 35% throughout all
force regimes. However, the complexes are found experimen-
tally and predicted theoretically to primarily transport bead via
load-sharing configurations above kinesin’s stalling force (see
Figure 2B). Overall, these results are significant, since they
illustrate that the unique transport behaviors that arise in the
static optical trap due to the spatiotemporal properties of
applied load in these experiments'® can be recapitulated by the
model that only accounts for mechanical interactions associated
with elastic motor coupling.

Despite the ability to reproduce dynamic trends, there are
still some significant differences between the model predictions
and the optical trapping data. Two-kinesin velocities in both the
static trap and force clamp are clearly underestimated by the
model at high applied loads, again, even when three motors are
assumed to be present on the bead’s surface.”® Thus, it is
important to consider a possible role of local motor interactions
in these responses. Measured (k3%,) transition rates (Figure
2A), which are average dissociation rates for two-motor-bound
complexes, also exceed the model predictions at low applied
loads (<7 pN) but fall below their predicted values at high
applied loads, yielding a more pronounced nonmonotonic force
dependence. While the latter result indicates that local
interactions may enhance cargo-filament affinities at high
applied loads (as discussed below), the difference between
measured and calculated (k3%,,) rates at low applied loads
suggests that the original form of the model overestimates the
free energy that a complex gains when both of its motors are
anchored to the filament. For example, the agreement between
theory and experiments can be improved greatly at low applied
loads by simply raising E_,,g, for each two-motor-bound state
enumerated by 0.47 kgT (Figure 2A). We suggest that this
result signifies that mechanical factors other than the elastic
coupling between motors can influence multiple-kinesin-
filament affinities by altering the free energy difference between
two-motor-bound configurations and single-motor-bound
configurations. While these changes could potentially stem
from various mechanical constraints (e.g, rotational and
torsional strains) as well as nonmechanical factors that are
not included in eq 1, the small energetic contributions of such
factors to E,,g, can have an appreciable influence on (kST
transition rates. Nevertheless, including these energy terms
does not modify motor stepping rates in the model, and it has
little effect on calculated two-kinesin velocities in both the static
optical trap and the force clamp, since these properties already
remain dominated by the absence of load-sharing between the
two motors. Finally, since this new treatment of E,5, provides
an overall improved fit to the two-kinesin data at low applied
loads, this form of the model was employed for all subsequent
analyses of local interactions between the kinesins.
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3.2. Interactions Affecting Motor-Filament Affinities.
We next examined the impact of local, nonmechanical
interactions between kinesins on their binding and detachment
transition rates, load-sharing probabilities, and average
velocities in the optical trap using the framework developed
by Roos et al*® to analyze the clustering of kinesins on
microtubules in motor-filament binding assays. As described in
the Theoretical Methods section, microscopic binding (kf ;)
and detachment rates (k"g)_,,-) in the master equations were
assumed to be enhanced by the factors y and & only when the
motors were bound to microtubule lattice sites that are spaced
by less than s, = 16.4 nm. With this treatment, average partial
detachment rates (k$f,) are predicted to follow the
experimental trend much more closely compared to the
model without interactions when y = 2 and 6 = 0.4 (Figure
3A). Importantly, these values fall in the range of microscopic
rate enhancements reported by Roos et al.,*® and according to
eq 17 yield a small net interaction energy corresponding to 1.6
kgT.

Interestingly, plots of the average binding transition rates
(k{",,) as a function of the applied loads show that motor-
filament attachment transitions are largely unaffected by the
introduction of local interactions into the model (Figure 3A).
This insensitivity can be explained by the fact that the changes
in the complex’s strain energy are much larger than the
amplitude of interaction energies specified by eq 17 when the
motors transition from a single-motor-bound configuration to
load-sharing configurations where the motors are spaced closely
on the filament and have the potential to interact.”> For
example, when the total applied load is 4 pN, calculated values
for AE g, associated with such transitions range between 15
and 26 kT, since they require forward cargo displacements
against the applied load of the trap in order for the newly
bound motor to take its portion of the load. The strong
energetic preference for a free motor to bind to a microtubule
lattice site far behind its load-bearing partner described in refs
25 and 22 is therefore retained even when local interactions are
included in the model. Accordingly, predictions of load-sharing
probabilities (Figure 3B) and average two-kinesin F—V
relationships (Figure 3C and D) are largely unchanged at all
applied loads. As a result, although this treatment results in
improved predictions of the complex’s load-dependent detach-
ment behavior, this form of local interactions has little effect on
the ability for the motors to share their load and is insufficient
to capture the apparent synergistic behaviors indicated by the
large two-kinesin velocities that are found above 7 pN in the
static trap and the force clamp.

3.3. Combined Affinity and Stepping Rate Enhance-
ments. The above results imply that local interactions may
affect both kinesin—microtubule—filament affinities and step-
ping rates at high applied loads. This is also more consistent
with the idea that local changes in free energy profiles should
modify all related chemical transitions. Consequently, we
explored whether combining the treatment of Roos et al.*® with
analogous modifications to the free energy profile along
kinesin’s stepping pathway would be sufficient to capture the
high velocities produced by the two-kinesin complexes above 7
pN in both optical trapping experiments. To do so, we first
examined the sensitivities of the two-kinesin velocities to
reductions of the free energy of the transition states associated
with the first (TS1) or the second (TS2) substep transition
enumerated in the Fisher—Kim model by 1.6 k3T, as specified
by eqs 18—21. The effect of increasing the energy of the
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Figure S. Dynamic properties of two-kinesin complexes in the model where local interactions affect motor-filament affinities and stepping rates. (A)
Detachment and binding rates: experimentally measured detachment rates are shown by circles, while blue and black curves correspond to calculated
values of detachment and binding rates, respectively. (B) Distribution of two-motor load-sharing and single-motor-bound states as a function of the
load. The blue and red triangles represent experimentally measured fractions of load-sharing and single-motor states, respectively. Blue and red
curves show calculated two-motor load-sharing and single-motor state probabilities, respectively. (C) Force—velocity relationships under static-trap
conditions. Symbols correspond to experimental measurements. Black and blue curves describe calculated values for original configurational energies
and for modified by interactions configurational energies (see text for details), respectively. (D) Force—velocity relationships for force-clamp
conditions. Symbols correspond to experimental measurements. Black and blue curves describe calculated values for original configurational energies

and for modified configurational energies (see text for details), respectively.

intermediate state (IS) along the kinesin stepping pathway by
1.6 kgT was also examined in a separate calculation. Overall,
each of these treatments produces substantial increases in two-
kinesin velocities at high applied loads, particularly when the
energies of TS2 and IS are altered, since the u,, substep
transition is rate limiting at most loads for kinesin using the
Fisher—Kim model (Figure 4). In fact, average two-kinesin
velocities are even overapproximated when local interactions
are assumed to increase both the free energy of IS and motor—
filament affinities as described above (Figure 4B). Lowering
TS1 by 1.6 kgT generally produces more modest velocity
enhancements but tends to enhance two-kinesin velocities at
very large loads (>12 pN), since the u, transition becomes rate
limiting in this load regime. In sum, these results generally show
that small scale interactions of a few kzT of energy can indeed
have a large effect on two-kinesin velocities, specifically at high
applied loads.

Overall, we find, empirically, that the best agreement
between the optical trapping data and the composite form of
the model where local interactions are assumed to affect both
motor—filament affinities and stepping rates is achieved when s,
=164 nm, y = 2, and 6 = 0.4, as in Figure 3, and when local
interactions are assumed to modify the free energy profile of
kinesin’s stepping pathway using: AE;1q; = —2.2 kpT, AE;;5 =
0.9 kyT, and AE; 1, = 0.25 kyT (Figure 5). These alterations
have little effect on two-kinesin velocities at the low applied
load, as well as on (k3%,,) transition rates and on load-sharing
state distributions at all loads. However, the rapid increase in
two-kinesin velocities at 7 pN that is observed in the static trap
is much more pronounced in the composite model, yielding F—
V relationships that are much closer to the experimental trends.
Moreover, the model retains key differences between the two-
kinesin velocities measured in the static trap and in the force
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clamp. The applied load of the static trap varies spatially and
temporally depending on the trap’s spring constant and how
the complexes move under load. In addition, the applied load
decreases after detachment events in the static trap where only
one of the two kinesins is released from the filament, since
these events are accompanied by rearward bead displace-
ments."> Both our experimental and prior theoretical analyses
suggest that this behavior reduces the probability that a two-
kinesin complex will remain bound via a single-motor linkage
significantly at high applied loads (F,, >7 pN). This
spatiotemporal “filtering” of two-kinesin configurations also
constitutes one of the main reasons the two-kinesin F—V
relationship in the static trap is found to exhibit an unusual
nonmonotonic dependence with or without interactions. The
position of the trapping laser is updated to maintain a constant
applied load in the force clamp. Bead velocities in the force
clamp are therefore influenced by mixtures of single- and two-
motor-bound states at all applied loads. Consequently,
interactions result in larger velocity enhancements in the static
trap compared to the force clamp when loads exceed kinesin’s
stalling force. However, the velocities below 7 pN are quite
similar in both experiments, and tend to closely follow the
single-kinesin F—V curves in each case. This behavior occurs
due to the preference for the complexes to transition from
single-motor-bound states to two-motor states where both
motors are positioned far apart on the microtubule under both
loading conditions, since AE,, for transitions into load-
sharing states is prohibitively large. These effects tend to
dominate two-kinesin dynamics, since they determine whether
a multiple motor complex is capable of generating config-
urations where the motors are able to interact.
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Table 1. Model Parameters and Their Estimated Values

estimated/
parameter measured values reference

7y, unloaded 4.7 57! ref 30
binding rate

&y, unloaded 0312 s7* estimated from ref 25
detachment rate

%, unloaded 1.59 X 10" s7'  estimated from ref 25, see also
stepping rate explanations in the text

u?,, unloaded 61.7 s7* estimated from ref 25, see also
stepping rate explanations in the text

w, unloaded 0.654 s~ estimated from ref 25, see also
stepping rate explanations in the text

w’_, unloaded 1.69 x 10° s} estimated from ref 25, see also
stepping rate explanations in the text

7, binding 2.0 ref 26
enhancement
factor

o, affinity factor 0.4 ref 26

4. SUMMARY AND CONCLUSIONS

We have developed a discrete-state stochastic model of multiple
kinesin dynamics that accounts for both (i) configuration-
dependent mechanical interactions between motors that
influence how forces are distributed between motors that are
bound to the same cargo and (ii) local, nonmechanical
interactions that have been found previously to enhance
kinesin—filament affinities when the motors are bound to
neighboring microtubule lattice sites. Although the mechanical
coupling between motors still dominates most multiple kinesin
behaviors, including the effects of weak local interactions (<2
kgT) in transition rate expressions, describing how multiple
kinesins bind to, detach from, and step along microtubules is
shown to improve the model’s agreement with experimentally
determined force—velocity relationships produced by structur-
ally defined kinesin complexes. In particular, this adaptation
provides much better agreement between theoretical and the
large experimental velocities observed in an optical trap at loads
that exceed kinesin’s stalling force, implying that the stepping
rates of colocalized kinesins can be enhanced significantly by
local, nonmechanical interactions even if their interaction
strength is relatively small.

Although the interaction energy scales identified in this work
are very similar to those determined from analyses of kinesin
binding and detachment kinetics in the absence of load,*® the
origin of local interactions between kinesins is still unknown.
The mutual attraction suggested by both studies could
potentially stem from various sources including local electro-
static interactions that are more or less contact dependent,
yielding an interaction distance that is comparable to the size of
the motor itself (d = 8.2 nm). The microtubule lattice structure
has been found to be altered locally by kinesin associations,*?
and such effects indicate that local interactions could also be
mediated through the microtubule filament. However, despite
their source, there is now increasing evidence that mutual
interactions between kinesins can enhance motor—filament
affinities. To our knowledge, this study provides the first
evidence that these effects can alter collective kinesin stepping
rates, yielding larger velocities in the presence of superstalling
loads.

One may expect that local interactions would result in more
synergistic multiple motor functions due to improved
coordination between the motors. The present analyses
suggest, however, that other factors dominate multiple kinesin
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dynamics by determining whether a complex can adopt bound
geometries where the motors can experience nonmechanical
interactions. The free energy changes associated with binding
transitions into states where the motors are positioned closely
and interact mechanically via load sharing are much higher than
their nonmechanical interaction energies. Consequently, multi-
ple kinesins still tend to transport their cargos via
configurations where only one motor bears the applied load.
Furthermore, the loads on cargos driven by multiple kinesins
increase rapidly compared to the rate that the geometrz evolves
from single-motor to load-sharing transport modes.”> Given
this property and other spatiotemporal “filtering” effects, motor
detachment will generally occur before the motors are given a
chance to interact mechanically or nonmechanically. We finally
note that this circumstance could change for different types of
motors that have lower stalling forces and whose velocities
change more sensitively to applied loads. In this case, a team of
motors could potentially adopt load-sharing states much more
readily, creating conditions where local interactions influence
multiple motor force production and stepping dynamics over a
larger range of applied loads. In this way, the microscopic
details of stepping mechanisms for each motor can potentially
determine the overall impact of local interactions and further
distinguish how groups of different motor types function
collectively.
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