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ABSTRACT: Protein search for targets on DNA starts all major biological processes.
Although significant experimental and theoretical efforts have been devoted to
investigation of these phenomena, mechanisms of protein−DNA interactions during the
search remain not fully understood. One of the most surprising observations is known as a
speed-selectivity paradox. It suggests that experimentally observed fast findings of targets
require smooth protein−DNA binding potentials, while the stability of the specific
protein−DNA complex imposes a large energy gap which should significantly slow down
the protein molecule. We developed a discrete-state stochastic approach that allowed us to
investigate explicitly target search phenomena and to analyze the speed-selectivity paradox.
A general dynamic phase diagram for different search regimes is constructed. The effect of
the target position on search dynamics is investigated. Using experimentally observed parameters, it is found that slow protein
diffusion on DNA does not lead to an increase in the search times. Thus, our theory resolves the speed-selectivity paradox by
arguing that it does not exist. It is just an artifact of using approximate continuum theoretical models for analyzing protein search
in the region of the parameter space beyond the range of validity of these models. In addition, the presented method, for the first
time, provides an explanation for fast target search at the level of single protein molecules. Our theoretical predictions agree with
all available experimental observations, and extensive Monte Carlo computer simulations are performed to support analytical
calculations.

■ INTRODUCTION
Protein molecules are major players in all living systems, and
through interactions with DNA, they support essentially all
cellular activities. Protein search for target sites on DNA plays a
central role in these interactions because most biological
processes start when some protein molecules bind to specific
sequences on DNA, initiating cascades of biochemical reactions
that control them.1−3 This fundamental aspect of protein−
DNA interactions has been investigated extensively in the last
40 years by utilizing various experimental4−29 and theoretical
methods.10,21,30−59 Although many features of protein search
on DNA have been uncovered, mechanisms of these
phenomena are still not well understood and it remains a
controversial problem.21,51,56,57

A large amount of experimental observations suggests that
many proteins find their targets on DNA very quickly and
efficiently, and frequently the search times are much shorter
than expected from limiting 3D diffusion estimates.4,10,21,51 For
example, chemical kinetic measurements on association rates of
lac repressor proteins to specific target sequences on DNA
yielded a rate constant kexp ≃ 1010 M−1 s−1, which is
approximately 100−1000 times larger than expected from
maximal values for chemical rates as specified by Debye−
Smoluchowski 3D diffusion theory.21,51,56 This is known as a
facilitated dif fusion phenomenon in the protein search. Recent
experimental evidence, coming mostly from single-molecule
experiments that can now visualize the dynamics of single
protein molecules,10,11,14,15,24,25 indicates that the protein
search is a complex dynamic process that couples 3D solution
diffusion with 1D sliding of proteins bound nonspecifically to

DNA, as schematically shown in Figure 1. Then, following the
classical works of Berg, Winter, and von Hippel,5−7 the total
search time could be estimated as

τ
λ

τ τ= +L
( )s 1D 3D (1)

with τ1D = λ2/2D1 and τ3D = x2/2D3, where L is the total
contour length of DNA, λ is the average length of DNA that the
protein molecule scans during each search cycle, x is the
average distance traveled by the protein in the solution before
binding to DNA, D1 is a diffusion constant to move along the
DNA, and D3 is protein’s bulk diffusion constant.21,51

Although current theoretical approaches have been able to
explain some features of the protein search dynamics, there is
an increasing number of experimental and theoretical studies
that challenge existing views.21,51,57,59 One of the most
surprising and controversial observations related to the protein
search is known as a “speed-selectivity paradox”.21,31,57 Since
the DNA molecule is a heteropolymer, binding energies of
protein molecules to the DNA chain depend on underlying
sequences. The magnitude of this dependence can be described
by the standard deviation of the energy distribution, σ.21,31 It
has been shown that sequence-dependent free-energy fluctua-
tions significantly slow down protein diffusion on DNA because
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in this case the protein molecule moves in a random
potential21,31,60

σ≃ −
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥D

k T
exp1

B

2

(2)

Fast searching rates are possible only for quick protein sliding
that requires a smooth potential with σ < 1−2 kBT, while the
stability of the protein−DNA complex imposes the condition
that σ > 5 kBT. The association energy to a specific target
sequence should be much larger than that to nonspecific sites
to keep the protein molecule bound to DNA longer in order for
other biochemical and biophysical processes to have enough
time to be accomplished. To resolve this paradox, it has been
proposed that during the search the protein molecule bound to
DNA might exist in two different conformational states: one is
a search mode where the protein quickly slides along the DNA,
and another one is a slow recognition mode where the protein
checks for a target sequence.21,31,56,57,59 Multiple protein−DNA
binding conformations have been observed in recent experi-
ments.17,24,27 However, the two-state approach to explain the
speed-selectivity paradox is not without problems. In various
presentations of the two-state model, the recognition state is
always assumed to have a higher free energy than the searching
state.21,31,56,59 This is a surprising and probably counterintuitive
assumption, since in the recognition state protein binds
stronger to DNA and the electrostatic attractive contributions
to the free energy are much larger in comparison with the
weakly bound searching state, suggesting lower free energy for
this state. Furthermore, fast search times observed in
experiments require very high conformational switching rates
between these two states (>103 s−1), but much slower
conformational changes are observed so far in the single-
molecule experiments, ≃1 s−1, at least for some systems.24

The speed-selectivity paradox is also related to another
problem of the current theoretical views on protein search
phenomena associated with the use of mostly continuum
models for description of intrinsically discrete biochemical
processes (binding/unbinding and hopping along the DNA
sites). One could easily see this by analyzing eq 1 in the limit of

very small diffusion constant on DNA, D1 → 0, which is the
case for many experimental systems.28 It predicts then the
infinite search time, which is unphysical since the protein still
can find the target site via 3D diffusion, and the search time
must be finite. This is the result of the fact that continuum
models are approximate and they cannot be used beyond their
range of validity, which is defined for the case when the
scanning length is much larger than the target size, λ ≫ a, so
that the effects of discreteness might be neglected. As a result,
none of current theoretical models can explain fast protein search
at the level of one or few protein molecules, the conditions
which are frequently observed for both in vitro and in vivo
systems.
In this paper, we present a simple physical-chemical approach

based on discrete-state stochastic models that allows us to
describe explicitly the protein search for targets on DNA. The
method is applied to test the origins of the speed-selectivity
paradox, and the analysis shows that this paradox is not real,
since it is an artifact of the continuum approximation utilized in
previous theoretical models. The presented theoretical method
provides a first quantitative explanation of the fast target search
on DNA at the level of single protein molecules. Our
theoretical calculations agree with available experimental
observations, and they are also fully supported by Monte
Carlo computer simulations.

■ THEORETICAL METHODS
Since the continuum description of the protein search dynamics
might lead to erroneous predictions, as has been argued above,
a simple discrete-state stochastic model shown in Figure 2 is

developed. We consider a single protein molecule that can be
found in the solution, or it can associate to any state i on the
DNA (i = 1, 2, ..., L). One of the binding sites (i = m) is a target
for the search. On the DNA, the protein can hop along the
chain with a diffusion rate u with equal probability in both
directions (see Figure 2). The protein might also dissociate
from the DNA with the rate koff. Because 3D solution diffusion
is typically fast in comparison with 1D sliding (which means
that the time to diffuse the volume around the DNA molecule
is shorter than the time for protein bound to DNA to slide
along its contour),14,15,51 we combine all solution states into the
one (state 0), and the equal probability to reach any site on
DNA from the solution is assumed (with the total rate of
binding to DNA given by kon); see Figure 2. The transition

Figure 1. A general view of the protein search for targets on DNA. A
protein molecule diffuses an average distance x in the solution, then
binds to DNA with the rate kon, and after scanning an average distance
λ it dissociates with the rate koff. The process is complete when any of
the searching proteins can bind to the specific target site.

Figure 2. A general scheme of the discrete-state stochastic model for
the protein search. The DNA chain has L − 1 nonspecific binding sites
and one specific site, which is the target of the protein search. A
protein molecule can diffuse along the DNA chain with the rate u, and
it can dissociate into the solution with the rate koff. From the solution,
the protein can bind to any site on the DNA with equal probability,
and the total association rate is equal to kon. The search is finished
when the protein binds to the target site at the position m.
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rates u, kon, and koff can be determined from experimental
measurements of protein search dynamics. For example, for lac
repressor proteins,14,15 the estimates for these rates yield u ≃
103−106 s−1, koff ≃ 200−3000 s−1, and kon ≃ 104 −106 s−1. This
is probably the simplest model that captures main features of
the protein search for targets on DNA. A similar discrete-state
model has been discussed recently for analyzing general
intermittent search problems.61

To describe the target search dynamics, we introduce a
function Fn(t), which is defined as a probability to reach the
target on site m at time t for the first time if at t = 0 the protein
was at the state n (n = 0, 1, ..., L). The temporal evolution of
these first-passage probabilities follows the backward master
equations58,62

= + +

− +

+ −
F t

t
u F t F t k F t

u k F t

d ( )
d

[ ( ) ( )] ( )

(2 ) ( )

n
n n

n

1 1 off 0

off (3)

for 2 ≤ n ≤ L − 1, while for sites at the DNA ends (n = 1 and n
= L) we have

= + − +
F t

t
uF t k F t u k F t

d ( )
d

( ) ( ) ( ) ( )1
2 off 0 off 1 (4)

= + − +−
F t

t
uF t k F t u k F t

d ( )
d

( ) ( ) ( ) ( )L
L L1 off 0 off (5)

The backward master equation is different if the protein
molecule starts from the solution, n = 0,

∑= −
=

F t
t

k
L

F t k F t
d ( )

d
( ) ( )

n

L

n
0 on

1
on 0

(6)

Note that in this equation we used the fact that the rate to bind
to any given site on DNA is kon/L, and the total rate of binding
to DNA is equal to kon. In addition, initial conditions require
that Fm(t) = δ(t) and Fn≠m(t = 0) = 0. These equations can be
analyzed by introducing Laplace transformations of first-passage

probability functions, ͠F s( )n ≡ ∫ 0
∞ e−stFn(t) dt. Then, backward

master equations (eqs 3, 4, and 6) can be written as a set of
simpler algebraic expressions

+ + = + +͠ ͠͠ ͠
+ −s u k F s u F s F s k F s( 2 ) ( ) [ ( ) ( )] ( )n n noff 1 1 off 0

(7)

+ + = +͠ ͠͠s u k F s uF s k F s( ) ( ) ( ) ( )off 1 2 off 0 (8)

+ + = + ͠͠ ͠
−s u k F s uF s k F s( ) ( ) ( ) ( )L Loff 1 off 0 (9)

∑+ = ͠͠
=

s k F s
k
L

F s( ) ( ) ( )
n

L

non 0
on

1 (10)

These equations are solved by assuming that the general form

of the solution is ͠F s( )n = Ayn + B, and using boundary and initial
conditions it yields

=
− +

+
+͠

−

−F s
B y y

y y
B( )

(1 )( )
n

n n

m m
(11)

for 1 ≤ n ≤ m and

=
− +

+
+͠

+ − − −

+ − − −F s
B y y

y y
B( )

(1 )( )
n

L n n L

L m m L

1 1

1 1
(12)

for m ≤ n ≤ L. Here, parameters y and B are given by

=
+ + − + + −

y
s u k s u k u

u

2 ( 2 ) 4

2
off off

2 2

(13)

=
+

͠
B

k F s
k s

( )
( )

off 0

off (14)

From eq 10, one can also show that

=
+

+ + +
F s

k k s S s
Ls k k s k k S s

( )
( ) ( )

( ) ( )0
on off

off on off on (15)

where the new auxiliary function S(s) is given by

=
+ −

− + +

+

+ −S
y y

y y y
(1 )(1 )

(1 )(1 )(1 )

L

m L m

1

1
(16)

Explicit analytical expression for first-passage probability
distribution functions in the Laplace form allows us to obtain a
full dynamic description of the search process. More
specifically, first-passage times to reach the target at the site
m starting with equal probability on any site on the DNA chain
can be computed from

∑≡ − ̃
= =

T
L

d
ds

F s
1

( )m
n

L

n

s1 0 (17)

producing a simple expression

=
+ −

T
k k

k k
L S

S
( ) ( (0))

(0)m
on off

on off (18)

The average time to find the target starting from the solution,
T0, can be easily found using the following equality

= −
∂

∂

=
+ −

= +

=

T
F s

s

k L k L S
k k S

T k

( )

( (0))
(0)

1/

s

m

0
0

0

off on

on off

on (19)

Any other dynamic properties of the system can be evaluated in
a similar way.

■ RESULTS AND DISCUSSION
Target Position. The developed theoretical method allows

us to fully explore all features of protein search dynamics. First,
we investigate the role of the target position. In Figure 3,
relative search times for varying target positions are calculated
for different DNA lengths using parameters relevant for lac
repressor proteins. As expected from the symmetry arguments,
the fastest search is achieved when the target is in the middle of
the DNA chain, as clearly shown for L = 11. However,
increasing the length of the DNA segment makes this effect less
pronounced, leading to a plateau in the search times (see
results for L = 101 and 1001). For realistic values of DNA
lengths (L = 106−109), one expects that the search becomes
effectively independent of the target position as long as the
target is not at the end sites. This might have an important
biological consequence for the protein search, since it argues
that target position is not a critical parameter for understanding
search dynamics.
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Dynamic Phase Diagram. Analytical expressions for first-
passage probabilities provide a convenient way of analyzing
protein search dynamics under different conditions. To
understand mechanisms of the target search, we note that
there are three length scales in the system: the size of the target
a (for simplicity, it is taken to be equal to 1 site in our
calculations), the scanning length λ (where λ = (u/koff)

1/2) that
corresponds to the average distance that the protein hops along
the DNA chain before the detachment, and the length L of the
DNA molecule. One could expect that varying scanning length
λ as compared with other relevant lengths should lead to
different search behaviors in the system. Our explicit
calculations support these qualitative predictions, and a full
dynamic phase diagram of the protein search for the target on
DNA is presented in Figure 4.
Theoretical analysis predicts three dynamic search phases

that we label as a random-walk regime, a sliding regime and a
jumping regime; see Figure 4. The phase diagram could be
understood using the following arguments. If the affinity of

DNA for binding the protein molecule is strong enough or
protein rapidly hops along the DNA, the scanning length could
be larger than the total length of DNA, λ > L, and the protein
will find the target by performing a simple random walk during
one search cycle. This dynamic phase is called a random-walk
regime (see Figure 4), and the average search time to reach the
target should scale quadratically with the length of DNA L. One
can show that, for λ ≥ L, we have from eq 16

λ

λ

≃ + + − − + +

+

−

−

S L L m L m L L

O

(0) [6 (1 ) (1 3 2 )] /6

( )

2 2

3 (20)

leading to T0 ∝ L2. For example, for the target in the middle of
the DNA chain, eq 19 yields

λ
≃

+
T

k k
k k

L
120

on off

on off

2

2
(21)

while for the target position at DNA ends we obtain

λ
≃

+
T

k k
k k

L
30

on off

on off

2

2
(22)

For constant diffusion rate u, large scanning length λ
corresponds to koff ≪ 1, and in this case, search times are T0
≃ L2/12u and T0 ≃ L2/3u for the target in the middle and at
the ends of the DNA chain, respectively.
Another dynamic search phase is observed when the

scanning length is smaller than the DNA length but larger
than the target size, 1 < λ < L. This is called a sliding regime
(Figure 4), and in this case, the protein molecule must
dissociate and associate several times before finding the target.
The average number of search cycles is given by L/λ and the
time for each cycle is independent of the DNA length,
suggesting a linear scaling for the total search time as a function
of L. The target is found mostly via 1D sliding along the DNA
chain. For λ < L, it can be shown from eq 19 that

λ≃ +S(0) 1 4 2 (23)

if 1 < m < L, while for the target position at the ends (m = 1 or
m = L)

λ≃ + +
S(0)

1 1 4
2

2

(24)

Then, the average search times for targets not at the DNA ends
can be well approximated as

λ
≈

+
T

k k
k k

L
20

on off

on off (25)

which for the fixed hopping rate u and koff ≪ 1 leads to T0 ∼ L/
(ukoff)

1/2.
The third dynamic search phase, called a jumping regime, is

observed when the scanning length is smaller than the target
size, λ < 1, so that the protein molecule effectively does not
scan neighboring sites on DNA after binding. The target is
found after, at average, L binding/unbinding jumping events,
and not via 1D sliding as in previous regimes. In this case, it can
be shown that

≈
+

T
k k

k k
L0

on off

on off (26)

The important observation here is that the search times do not
depend on the 1D protein sliding rates. For constant hopping

Figure 3. Relative search time as a function of the target position on
the DNA chain. Solid curves are analytical results, while symbols are
from Monte Carlo computer simulations. The red curve and red
symbols correspond to L = 11, the green curve and green symbols are
for L = 101, and the blue curve and blue symbols describe L = 1001.
The transition rates are koff = 103 s−1 and u = kon = 105 s−1.

Figure 4. Average times to find the target on DNA for the protein
molecule starting from the solution as a function of the scanning
length λ = (u/koff)

1/2. The solid curve corresponds to predictions of
our discrete-state model (eq 19), and the dashed curve is the result of
calculations using a continuum approach (eq 12 from ref 33). The
parameters are L = 106 bp, u = kon = 105 s−1, and m = L/2. The
transition rate koff is varied to change λ.
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rate u, this regime is achieved when koff ≫ 1, leading to T0 ≃ L/
kon. Theoretical calculations also show that the minimal search
time is observed in the border area between jumping and
sliding search regimes, although for realistic transition rates the
minimum is quite shallow.
The developed phase diagram provides a full picture of

protein search dynamics, and it should be generally valid for all
systems where proteins are finding targets on DNA. One of the
interesting predictions that the theoretical model makes is the
observation of different scalings for search times as a function
of DNA length for different search regimes. It is illustrated
more explicitly in Figure 5 where search times are analyzed for

various conditions. For these calculations, the constant 1D
diffusion rate is assumed, u = 105 s−1. The red curve and
symbols correspond to koff = 106 s−1 which gives a scanning
length less than 1, λ ≈ 0.32. For all values of L, this system is in
the jumping regime, and the linear scaling is clearly observed
for all ranges of parameters. The green curve and symbols
(Figure 5) describe koff = 103 s−1, yielding the scanning length λ
= 10. For L < 10, the system is in the random-walk regime (λ >
L) with the quadratic scaling, and for L > 10, the search follows
the sliding regime with linear scaling. More strongly, the
crossover from ∼L2 to ∼L behavior is observed for the blue
curve and symbols (see Figure 5), where koff = 10 s−1 is
assumed. Here, the scanning length is equal to λ = 100. These
calculations suggest that in nature tuning binding/unbinding
and 1D diffusion rates might provide a convenient tool of
modifying protein search dynamics.
Speed-Selectivity Paradox. The presented theoretical

approach, in which all dynamic properties of the search
processes can be obtained analytically, allows us also to fully
analyze the speed-selectivity paradox. According to this
paradox, due to inhomogeneous protein−DNA interactions,
the protein molecule must hop along the DNA much slower,
leading to shorter scanning distances and very large search
times, in contradiction to experimentally observed fast
times.21,31,57 One could argue here that the increase in the
search time is due to increasing the number of search cycles
(≃L/λ) for smaller λ. Thus, the prediction is that for λ → 0 the

search time diverges, T0 → ∞. However, this is not what is
observed in our discrete-state stochastic model of the protein
search; see Figure 4. For small values of the scanning length (λ
< 1), the search time becomes a constant value independent of
the 1D hoping rate u, as indicated in eq 26. This is a physically
reasonable result, since in this dynamic regime the protein
molecule does not have the time to scan the DNAit is
detached before it can hop to the neighboring DNA site, and
only associations and dissociations can be observed. We predict
that for experimentally realistic fast binding and unbinding
rates, the search rate in this jumping regime can be quite fast,
only slightly slower than for the most optimal search
conditions, as shown in Figure 4.
It is important to note that our model does not explicitly

include heterogeneity effects that lead to eq 2, although it could
be done by extending the model to include a random
distribution of diffusion rates u. However, the 1D sliding
diffusion coefficient D1 is directly related to the average
scanning length, λ ∝ (D1τ1D)

1/2. This allows us to utilize the
scanning length as a critical parameter to characterize the
speed-selectivity paradox.
The incorrect predictions of the speed-selectivity paradox are

due to using the continuum models to analyze protein search
dynamics (see Figure 4). Continuum models21,31,33,56,59 are
widely utilized in studying complex processes associated with
the target search on DNA. However, one must remember that
they are valid only when the scanning length is significantly
larger that the size of the binding site, i.e., λ > 1. One can see
from Figure 4 that in this case predictions of both discrete-state
and continuum models fully agree. The problem comes when
the continuum model is applied for λ ≤ 1, and this is the source
of the speed-selectivity paradox. Thus, this paradox is the
artifact of the continuum models for protein search and most
probably it does not exist for real systems.
Our theoretical method provides also explicit estimates of the

search times for real biological systems. Using transition rates
estimated from experiments on lac repressor proteins, as
explained above, we find that T0 ≃ 10−50 s−1. It corresponds to
the sliding regime and the border area with the jumping regime,
as indicated in the dynamic phase diagram in Figure 4. Most
probably, the search times are not minimal for this system, but
actual times do not deviate much from the most optimal search
conditions. To test our theoretical method, it is important to
compare computed quantities with experimentally measured
times.21,51 In our calculations, we assumed a single protein
molecule in the volume occupied by a single DNA chain. For
the DNA chain of the length L = 106 bp, one could estimate the
Kuhn length b from the persistence length lp, producing b = 2lp
= 300 bp, and the number of the Kuhn segments in DNA N is
given by N = L/b ≃ 3 × 103. From these data, a radius of
gyration of the DNA chain can be estimated, ⟨Rg

2⟩ = Nb2/6,
yielding Rg ≃ 104 bp, which gives the volume occupied by a
single DNA molecule, V = (4πRg

3)/3 ≃ 10−13 L. The single
protein molecule in this volume corresponds to protein
concentration in the solution of the order of cp ≃ 10−11 M.
Then, using the experimentally measured rate constant of
association for lac repressor, kexp ≃ 1010 M−1, the experimental
search time is equal to T0 = 1/(kexpcp) ≃ 10 s, which agrees well
with theoretical predictions from our model. It is important to
note that the fraction of time the protein spends on DNA can
be estimated from the following expression

Figure 5. Target search times as a function of the DNA length. For all
calculations, the parameters are u = kon = 105 s−1 and m = L/2. The red
curve and red symbols correspond to koff = 106 s−1, the green curve
and green symbols correspond koff = 103 s−1, and the blue curve and
blue symbols correspond to koff = 10 s−1. Curves are analytical
predictions, and symbols are from Monte Carlo computer simulations.
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τ
τ τ

=
+

=
+

r
k

k k( )
1D

1D 3D

on

on off (27)

Using experimental estimates of koff ≃ 200−3000 s−1 and kon ≃
104−106 s−1, we obtain that 0.77 < r < 0.997; i.e., in all cases, we
predict that the protein is mostly bound to DNA, as observed
in experiments.14,15,17 To the best of our knowledge, this is a
first theoretical estimate of the target search time that explains
experimental measurements on facilitated diffusion at the level
of single protein molecules. Our theory suggests that short
search times are due to strong coupling between 3D and 1D
motions of the protein molecule that leads to fast binding and
unbinding transitions, leading to rapid exploration of all sites on
DNA.

■ SUMMARY AND CONCLUSIONS
We have investigated theoretically mechanisms of protein
search for targets on DNA by analyzing discrete-state stochastic
models that take into account relevant biochemical and
biophysical transitions such as binding, unbinding, and diffusion
along the DNA. Using the first-passage approach that allows for
exact solution of these models at all times, the protein target
search dynamics has been analyzed explicitly. It has been found
that the target position is important for protein search only for
short DNA segments, while for realistic large lengths it does not
play any role, as long as the target is not occupying the end
sites. A dynamic phase diagram for the protein search has also
been constructed. Three possible search regimes are identified
depending on relative values of the scanning length, the size of
the target, and the DNA length. For scanning lengths larger
than the DNA length, the search is dominated by simple
random-walk dynamics with quadratic scaling for the search
time as a function of the DNA length. When the scanning
length is larger than the target but smaller than the DNA
length, the system is in the sliding regime, where several search
cycles must be performed by the protein before the target can
be found. A linear scaling for the search time is found in this
dynamic phase. For both dynamic regimes, random-walk and
sliding, the same scaling behavior is observed using continuum
models of protein target search. For scanning length smaller
than the target size, the system follows the jumping dynamics,
when the search is taking place only via binding and unbinding
transitions. Again, in this dynamic phase, a linear scaling for the
search time is predicted. It is important to note that the
continuum approach completely fails to properly describe this
regime.
An explicit analytical framework for protein search dynamics

provided a convenient tool for testing the speed-selectivity
paradox. Surprisingly, our theoretical analysis showed that the
paradox does not exist, since in the limit of small scanning
lengths the search rates might not go to zero as predicted by
the paradox. This is due to the fact that the protein molecule
can still find the target, although only via binding/unbinding
events. It is argued that the speed-selectivity paradox is an
artificial and unrealistic consequence of applying continuum
models to the part of the parameter phase space where the
continuum approximation does not hold anymore. A proper
discrete-state stochastic analysis that is valid for all ranges of
parameters corrects this error, and there is no need to invoke
different protein−DNA binding conformations to explain this
phenomenon. In addition, using experimental estimates of
transition rates, the target search times are calculated for
repressor proteins, and it is found that theoretical predictions

agree well with reported experimental association rates. It is
argued that this is a first theoretical calculation, consistent with
basic laws of chemistry and physics and all available
experimental information, that explains the facilitated diffusion
at the level of single proteins.
Although the presented theoretical approach seems to be

successful in capturing main features of protein search
dynamics, the models discussed in this work are rather
oversimplified with several approximations, and many proper-
ties of protein−DNA systems are neglected. It will be
important to extend theoretical analysis to account for the
sequence dependence in the protein binding to DNA. One
could argue that a dynamic phase diagram similar to the one
presented in this work is expected, although with increased
regions of jumping and sliding phases. Another important
direction of future work is to explain the existence of several
protein-binding configurations and their role in the protein
search dynamics. It will also be relevant to take into account
correlations between 3D and 1D motions, as well as the fact
that in real systems the protein molecule might not have equal
probability to reach every site on DNA. The advantage of the
presented discrete-state stochastic method is the fact that it
provides a convenient theoretical framework which can be
extended in all of these directions. Finally, for a full
understanding of the protein search dynamics, it will be
critically important to test presented theoretical results directly
in experimental studies.
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