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ABSTRACT: Cytoskeleton proteins are filament structures that support a large
number of important biological processes. These dynamic biopolymers exist in
nonequilibrium conditions stimulated by hydrolysis chemical reactions in their
monomers. Current theoretical methods provide a comprehensive picture of
biochemical and biophysical processes in cytoskeleton proteins. However, the
description is only qualitative under biologically relevant conditions because utilized
theoretical mean-field models neglect correlations. We develop a new theoretical method to describe dynamic processes in
cytoskeleton proteins that takes into account spatial correlations in the chemical composition of these biopolymers. Our
approach is based on analysis of probabilities of different clusters of subunits. It allows us to obtain exact analytical expressions for
a variety of dynamic properties of cytoskeleton filaments. By comparing theoretical predictions with Monte Carlo computer
simulations, it is shown that our method provides a fully quantitative description of complex dynamic phenomena in cytoskeleton
proteins under all conditions.

■ INTRODUCTION
Cytoskeleton proteins such as microtubules and actin filaments
are rigid polymer molecules involved in a variety of
fundamental biological processes.1−3 They play a central role
in supporting biological transport, cell motility and division,
cytoplasmic organization, signaling, and mechanosensation in
cells.4−6 The structural, biochemical, and dynamic features of
cytoskeleton proteins have been extensively studied in recent
years.4,5,7 Advanced experimental methods now allow research-
ers to look into the assembly and dynamics of cytoskeleton
filaments with single-molecule precision and high temporal
resolution.8−10 It was demonstrated that cytoskeleton proteins
possess unique biophysical and biochemical properties.
However, many of these experimental observations are still
not well understood theoretically.
Cytoskeleton proteins can be viewed as complex multifila-

ment structures.1−3 Actin filaments consist of two polymer
chains that are wrapped around each other, producing a right-
handed helix. Microtubules typically have 13 parallel protofila-
ments arranged circumferentially, creating a hollow cylindrical
structure. Cytoskeleton proteins are highly dynamic polymers,
and they function under nonequilibrium conditions in cells.
These conditions are stimulated by energy dissipation produced
by hydrolysis processes that are taking place in specific
molecules attached to subunits in cytoskeleton proteins. In
actin filaments, it is a hydrolysis of adenosine triphosphate
(ATP). In microtubules, the hydrolysis of the related
monomer-bound molecule guanosine triphosphate (GTP)
drives all dynamic processes. Precise molecular mechanisms
of hydrolysis in cytoskeleton proteins remain not fully
explained despite significant experimental and theoretical
efforts.7,11−13

It is known that in cells concentrations of free actin
monomers and tubulins (cytoskeleton filaments are made of
them) are close to the so-called critical concentrations when the

average rate of the filament growth is equal to zero. Under
these conditions, many dynamic phenomena, including large
length fluctuations, treadmilling, and dynamic instability, can be
observed in cytoskeleton proteins.14,15 However, our under-
standing of underlying mechanisms of these processes is still
limited. In recent years, several theoretical approaches have
been proposed and applied to explain these fascinating
phenomena,13,16−21 but none of them is able to fully describe
them.
Current theoretical methods for investigating dynamic

processes in cytoskeleton proteins are based on simplified
mean-field models that neglect spatial correlations between
different subunits in these filaments.13,17,20 It gives a reasonable
description of many features in actin filaments and micro-
tubules, especially at high concentrations of free actin and
tubulin monomers in the solution. However, current methods
do not work well at biologically relevant conditions which
correspond to small and intermediate concentrations near the
critical concentration. Apparently, correlations are significant in
this regime. Since most biological phenomena supported by
cytoskeleton filaments are taking place under these conditions,
it is important to have a theoretical picture that correctly
captures microscopic details under these conditions. In this
paper, we develop a new theoretical framework for studying
dynamic processes in cytoskeleton proteins. It utilizes the
analysis of temporal evolution of different clusters of subunits
in filaments, and it provides exact analytical expressions for all
dynamic properties of these biopolymers. The idea of using
clusters has been proposed before,22,23 but the spatial
component of correlations and the dependence on the position
in the filament were not included. The main advantage of our
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method is that it accounts for such correlations and provides a
fully quantitative description of assembly and growth
phenomena in actin filaments and microtubules. Our analytical
predictions are tested with Monte Carlo computer simulations.

■ THEORETICAL METHOD
It has been argued before that a simplified single-filament
picture to describe growth dynamics in cytoskeleton proteins
can successfully capture most physical−chemical properties of
the system.20 For this reason, we consider a model of the
cytoskeleton filament as shown in Figure 1. Instead of

multifilament structure for real microtubules and actin
filaments, a single-polymer description is utilized in this
model (Figure 1). However, it allows us to develop a quite
realistic dynamic picture of processes in cytoskeleton
proteins.20

Microtubules and actin filaments are formed from the self-
assembly of heterodimeric tubulin dimer subunits and actin
monomers, respectively. In microtubules, GTP molecules
bound to tubulin subunits might hydrolyze, producing
guanosine diphosphate (GDP). Similarly, in actin monomers,
ATP might hydrolyze to adenosine diphosphate (ADP). The
hydrolysis processes in cytoskeleton filaments have several
stages, but to simplify calculations, it is frequently considered as
a two-state process.13,20 We also adopt here the two-state
picture, and the unhydrolyzed and hydrolyzed monomers are
labeled as T-subunits or D-subunits, respectively; see Figure 1.
However, our method can be easily extended to include
intermediate states of the hydrolysis process.
Both microtubules and actin filaments are polar polymers

with different properties for two ends of the filament. One end
which has a faster dynamics is called a “plus” end, while the
other end is known as a “minus” end. We focus on physical−
chemical properties of the “plus” ends of cytoskeleton
biopolymers. Each filament can grow by attaching T-subunits
to its end with a rate U = konCT, where kon is the rate constant
and CT is the concentration of free T-subunits in the
surrounding solution, which is also assumed to be a constant
value. The detachment of the last subunit shortens the filament,
and the rate for this process depends on the chemical state of
the dissociating subunit. If the filament tip is occupied by a T-
or D-subunit, then the corresponding dissociation rates are
given by WT or WD, respectively. The T-subunits in the
filament can be hydrolyzed at any time. Currently, the
underlying mechanisms for hydrolysis in cytoskeleton filaments

are still not well established.16−18,24−31 Here, we assume that all
T-subunits within the filament can be hydrolyzed with equal
probability and the hydrolysis rate is equal to r, as shown in
Figure 1. This is known as a random hydrolysis mechanism.
The main idea of our method is to investigate the dynamics

of arbitrary clusters of subunits within the cytoskeleton
filament. We define a cluster distribution function Sn(l, t) as a
probability to find a cluster of l sites (all T-subunits) starting
from the site n (counting from the tip of the polymer) at time t
independently from the state of all other subunits in the filament.
This is different from the probability to have the cluster of
exactly l T-subunits starting from the site n where sites n − 1
and n + l are definitely hydrolyzed. To explain our approach
better, we start the analysis with a special case when
dissociation rates for hydrolyzed and unhydrolyzed monomers
at the tip are the same, WT = WD = W. It allows us to obtain
exact and explicit analytical solutions for cluster distributions at
the stationary state, which leads to a full dynamic description of
the system. On the basis of these calculations, we continue our
derivations for a more realistic general case when T-subunits
and D-subunits detach with different rates, WT ≠ WD.

■ RESULTS AND DISCUSSION
Special Case: Equal Detachment Rates for T- and D-

Subunits. For the special case of equal detachment rates from
the filament tip, WT = WD = W, the temporal evolution of the
cluster distribution function Sn(l, t) can be described by the
following master equations:

= + − + +− +
S l t

t
US l t WS l t U W lr S

l t

d ( , )
d

( , ) ( , ) ( )

( , )

n
n n n1 1

(1)

for n > 1. The physical meaning of this equation is the
following. The first and second terms correspond to a creation
of the clusters via shifting the existing segments from the site n
− 1 or n + 1 by adding or removing the subunit at the tip of the
polymer, respectively. The third term corresponds to destroy-
ing the cluster via addition and removal of the end subunits and
also through the hydrolysis process. For the end subunit (n =
1), the dynamic rules are different and the corresponding
master equations are given by

= − + − + +
S l t

t
US l t WS l t U W lr S

l t

d ( , )
d

( 1, ) ( , ) ( )

( , )

1
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for l > 1, and the changes in the probability of the cluster S1(1,
t) with n = 1 and l = 1 are governed by

= + − + +
S t

t
U WS t U W r S t

d (1, )
d

(1, ) ( ) (1, )1
2 1 (3)

Importantly, no mean-field assumptions have been made in
these equations. Note also that these expressions are written in
the system of coordinates where the tip of the filament is always
at the origin. One can immediately see the advantage of
utilizing clusters, since the spatial correlations are automatically
taken into account. Another advantage of this approach is that
it recovers existing mean-field theoretical models when only
clusters of size one are considered.
To solve the master equations at large times (t → ∞), we

look for a solution Sn(l) in the following form:

Figure 1. Schematic view of a single-filament model for cytoskeleton
proteins. The unhydrolyzed subunits bound with GTP(ATP)
molecules are indicated by red symbols, while hydrolyzed subunits
are shown by blue symbols. U and WT correspond to the attachment
and detachment rates of the T-subunits, respectively. WD is the
detachment rate of the hydrolyzed subunits at the tip of the filament.
All T-subunits in the filament can be hydrolyzed with equal probability
and with a rate r.
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=S l A q( )n l l
n

(4)

where Al and ql are unknown parameters that can be obtained
by substituting this ansatz into the master equations. First, we
substitute eq 4 into eq 1, leading to

− + + + =Wq U W lr q U( ) 0l l
2

(5)

The explicit expression for the parameter ql is then simply given
by

=
+ + − + + −

q
U W lr U W lr UW

W
( ) ( ) 4

2l

2

(6)

where it can be shown that the other root of eq 5 is unphysical.
For the special case l = 1, we have

− + + + =Wq U W r q U( ) 01
2

1 (7)

Interestingly, the parameter q1 here gives the probability that
the end subunit of the filament is unhydrolyzed, and it fully
agrees with results obtained in the earlier mean-field
approach.18

Similarly, by substituting eq 4 into eq 3 at stationary state, it
can be shown that

− + + + =A Wq A U W r q U( ) 01 1
2

1 1 (8)

Then, the solution A1 = 1 can be obtained directly by
comparing the above equation with eq 7. From the ansatz for
Sn(l), the function S1(1), which is the probability that the
leading subunit is unhydrolyzed, is simply given by S1(1) = A1q1
= q1. It is fully consistent with the arguments presented above
on the physical meaning of the function q1. For parameters Al
with l > 1, we use the same strategy and substitute eq 4 into eq
2, yielding

+ − + + =− −UA q A Wq A U W lr q( ) 0l l l l l l1 1
2

(9)

Then, one can show that

∏=
=

−

A ql
k

l

k
1

1

(10)

where eq 5 is employed to derive this result. Finally, the
expression for Sn(l) at stationary state can be written as

∏= = −

=

S l A q q q( )n l l
n

l
n

k

l

k
1

1 (11)

where ql is given explicitly by eq 6. This simple result has a
simple physical interpretation. Sn(l) is a product of two terms.
The first one, ql

n−1, gives the probability to find the cluster at
site n, while the second, ∏k=1

l qk, describes the probability to
have l consecutive T-subunits.
The explicit formulas for cluster distributions Sn(l) can be

used to obtain all relevant dynamic properties of the filament.
Specifically, the function Sn(1) describes a probability density
profile of unhydrolyzed T-subunits along the filament. The
average number ⟨n⟩ of unhydrolyzed monomers in the filament
can be easily calculated from

∑⟨ ⟩ =
=

∞

n S (1)
n

n
1 (12)

producing

⟨ ⟩ =
− − + + + −

n
U W r U W r UW

r
( ) 4

2

2

(13)

As expected, this result suggests that the number of T-subunits
in the filament increases for smaller hydrolysis rates.
Another important quantity for actin filaments and micro-

tubules is a cap size which is defined as the average number of
unhydrolyzed subunits at the end of the filament (see Figure 1).
This cap would help the filament to maintain a stable structure
and to prevent it from the fast depolymerization of the exposed
hydrolyzed subunits. We can obtain the cap size by introducing
a new function Pl from the cluster distributions Sn(l)

= − +P S l S l( ) ( 1)l 1 1 (14)

It has a physical meaning of probability of having exactly l
unhydrolyzed subunits at the tip of the filament. It can be
shown that

∏= −
=

+P q q(1 )l
k

l

k l
1

1
(15)

This result also has a simple physical interpretation that the
cluster has l T-subunits, but the l + 1-th monomer is already
hydrolyzed. Then, the average size ⟨Ncap⟩ of the cap can be
calculated as follows:

∑ ∑ ∏⟨ ⟩ = =
=

∞

=

∞

=

N lP q
l

l
l k

l

kcap
1 1 1 (16)

All other dynamic properties of the filament system can be
obtained using the same approach.
Previous theoretical methods were also able to calculate

various dynamic properties of cytoskeleton proteins.13,17,20

These models describe quite well the dynamics of actin
filaments and microtubules at large concentrations of free
monomers in the solution, as found by comparing with Monte
Carlo computer simulations. However, all mean-field methods
failed to describe the assembly processes quantitatively below
and close to the critical concentrations where the growth
velocity of the filament vanishes. It suggests that correlations
play an important role in controlling dynamic processes in
cytoskeleton filaments under these conditions.
To illustrate the method, we test predictions for cluster

distribution functions from our analysis and from the simplified
mean-field models with Monte Carlo computer simulations.
Note that in the mean-field picture the stationary cluster
distribution function Sn(l) in our terms can be written as

∏= =
=

+ −
+ −S l S q( ) (1)n

k n

n l

k
n l l

1

1
(2 1) /2

(17)

while in our model the expression for Sn(l) is given by eq 11.
More specifically, we analyze the stationary cluster distributions
S1(l) and S2(l) as a function of the cluster size l for
microtubules using parameters from Table 1 with the only
exception being that the detachment rates are the same, WD =
WT = 24 s−1. The results are presented in Figure 2. These
quantities are calculated for two different free tubulin
concentrations. In the first case, we take large CT = 20 μM
(Figure 2A and B), while in the second case CT = 5 μM close to
the critical concentration (∼7.5 μM) is used (Figure 2C and
D). One can see that for large free monomer concentrations
both theoretical approaches show excellent agreement with
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results from Monte Carlo computer simulations. However, the
predictions from the mean-field model start to deviate at low
CT, while our method still shows a perfect agreement with
computer simulations under these conditions; see Figure 2C
and D.
Different predictions for cluster distribution functions lead to

deviations in all dynamic properties of cytoskeleton filaments.
For example, in Figure 3A, we compare the results for the cap
length at different concentrations of free monomers in the
solution. Our approach performs very well at all ranges of
concentrations, and the results are indistinguishable from
computer simulations. At the same time, the simplified mean-
field picture shows the deviations below 10 μM, which is the
region around the critical concentration, although they are not
large.
General Case: Detachment Rates for T- and D-

Subunits Are Not Equal. Now we consider a more realistic
general case of unequal detachment rates for hydrolyzed and
unhydrolyzed subunits at the tip of the filaments. Again, we
analyze the temporal evolution of cluster probability functions
Sn(l, t) which are governed by master equations

= +

+ − − + +

+ −

− +

+

S l t
t

US l t W S l t S t

W S l t S t U lr W S t

W S t S l t

d ( , )
d

( , ) ( , ) (1, )

( , )(1 (1, )) [ (1, )

(1 (1, ))] ( , )

n
n n

n

n

1 T 1 1

D 1 1 T 1

D 1 (18)

for n > 1. The important observation here is that these
equations, in contrast to eq 1, are approximate, since we
assumed that the chemical state of the end subunit is
independent of the state of any cluster of size l beyond the
site n. However, by considering clusters, it still takes into
account some spatial correlations in comparison with the
simplified mean-field approach where the chemical states of any
two neighboring subunits are assumed always to be
independent. For WT = WD, eq 18 reduces, as expected, to
eq 1 and no assumptions are needed.
Similarly to the special case, the dynamic rules change for the

end subunit (n = 1), and we have the following master
equations:

= − +

+ − − + +

S l t
t

US l t W S l t S t
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1
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for l > 1, and for the distribution S1(1, t) with n = 1 and l = 1, it
can be shown that

= +

+ − − + +

S t
t

U W S t S t
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1
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At stationary state, we use the same ansatz eq 4 for the
function Sn(l) in eq 18, and it leads to the following expression:

+ + −

− + + + − =

U W q A q W q A q

U lr W A q W A q q

(1 )

[ (1 )] 0
l l

l

T
2

1 1 D
2

1 1

T 1 1 D 1 1 (21)

Note that here the function ql depends on the parameters q1
and A1. This equation reduces to eq 5 for the same detachment
rates WT = WD. For the case l = 1 from eq 21, we obtain

Table 1. Parameters Utilized in Calculations and the
Corresponding References

parameter rates ref

kon, on-rate of T-tubulin dimers (plus end) 3.2 μM−1 s−1 2
WT, off-rate of T-tubulin dimers (plus end) 24 s−1 32
WD, off-rate of D-tubulin dimers (plus end) 290 s−1 2
r, hydrolysis rate 0.2 s−1 20

Figure 2. The cluster distributions S1(l) and S2(l) as a function of the
cluster size l for the special case with rates WT = WD = 24 s−1. Parts A
and C correspond to the cluster distribution S1(l). Parts B and D give
the cluster distribution S2(l). The free monomer concentration is 20
μM for parts A and B and 5 μM for parts C and D. The red solid lines
correspond to the method developed in this work, the blue solid lines
are calculated from the previously used mean-field theory,20 and the
open purple circles are from Monte Carlo computer simulations.

Figure 3. The cap size of the filament as a function of T-subunit
concentration: (A) for the special case when hydrolyzed and
unhydrolyzed subunits detach from the tip of the filament with the
same rate WT = WD = 24 s−1; (B) for the general case with the
detachment rates for hydrolyzed and unhydrolyzed monomers taken
from Table 1. The red solid lines are given by the theory developed in
this article, the blue solid lines are obtained from the mean-field
theory,20 and the purple dots are from the Monte Carlo computer
simulations.
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+ + −

− + + + − =

U A W q A q W q

U r W A q W A q q
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Now, applying the ansatz eq 4 in eq 20 at large times yields
another equation

+ + − − + +

=

U A W q A q A W q U r W A q(1 ) ( )

0

1
2

T 1
3

1 1 1 D 1
2

T 1 1

(23)

Comparing eqs 22 and 23, one can find that the simple solution
A1 = 1 obtained for the special case of WT = WD does not work
in the general situation. However, these two algebraic equations
can be solved together to determine numerically exactly the
unknown parameters q1 and A1. It will provide expressions for
parameters ql from eq 21. However, we also need to determine
parameters Al for l > 1. It can be done by substituting eq 4 into
eq 19, leading to the following recursion relation:

λ= − −A A ql l l l1 1 (24)

where

λ =
− − −q W W A q U

1
1 ( )(1 )/l

l D T 1 1 (25)

Therefore, the parameter Al can be described explicitly as

∏
λ

λ=
=

A
A

q
ql

l k

l

k k
1

1 1 (26)

Finally, the general solution for Sn(l) at stationary state can be
written in terms of already calculated parameters ql and Al

∏
λ

λ= =
−

=

S l A q
A q

q( )n l l
n l

n

k

l

k k
1

1

1 1 (27)

These results allow us to obtain all dynamic properties of
cytoskeleton filaments, as was described in detail for the special
case.
Since our method for the general case of unequal detachment

rates is also approximate, it is important to test its predictions.
In Figure 4, the stationary cluster distribution functions S1(l)
and S2(l) as a function of the cluster size l are presented for two
different concentrations of free monomers in the solution.
Cluster distributions at CT = 20 μM are shown in Figure 4A
and B. This concentration is larger than the critical
concentration for this case which is equal to 8.1 μM. The
cluster distributions at CT = 5 μM are plotted in Figure 4C and
D. One can see that both the simplified mean-field and our
model give excellent predictions for large concentrations (see
Figure 4A and B). However, it should be noted that there are
small deviations from simulations for the simplified mean-field
model for S2(l) for clusters larger than l = 25, while our method
is still very good at all cluster sizes. The picture is very different
at small concentrations where the simplified mean-field method
fails to properly describe cluster distribution functions, and the
performance for S2(l) is worse than that for S1(l); see Figure 4C
and D. Comparing Figures 2 and 4, we might conclude that for
more realistic biological conditions the role of correlations is
even stronger than that for the special case. This conclusion can
be illustrated by considering the calculated cap sizes for
cytoskeleton filaments, as presented in Figure 3. For realistic
microtubule parameters (Figure 3B), deviations of the
simplified mean-field model near the critical concentrations

become significant. At the same time, our method fully
accounts for all dynamic behavior under all conditions,
suggesting that spatial correlations cannot be ignored.
To analyze the role of correlations in dynamic processes in

cytoskeleton proteins, we consider a new function τ1,2 defined
as

τ =
S

S S
(2)

(1) (1)1,2
1

1 2 (28)

It gives a quantitative measure of correlations for the last two
subunits in the polymer. The value of τ1,2 should be equal to 1 if
there are no correlations between the chemical states of the last
two subunits. Deviations from unity will show the degree of
correlations in this case. This quantity is presented in Figure 5
for realistic microtubule parameters from Table 1. One can see
that correlations disappear above the critical concentration (8.1
μM), while below the critical concentration they are significant
and increase with lowering CT. It explains the success of our
method in describing dynamic properties of cytoskeleton
proteins because it accounts for spatial correlations between
subunits in the polymer.
We can give the following simple arguments for why

correlations play an important role under conditions near or
below the critical concentration. At large concentrations, the
chemical process of attachment of monomers to the filament
dominates the process, leading to a large cap of unhydrolyzed
T-subunits. It means that most monomers are not hydrolyzed,
and its position relative to the tip of the polymer and the
chemical state of their neighbors do not affect their fates. This
effectively corresponds to the absence of correlations. The
situation changes dramatically at the critical concentration and
below. Here detachments and hydrolysis are becoming more

Figure 4. The cluster distributions S1(l) and S2(l) as a function of the
cluster size l for the general case with ratesWT ≠WD as given in Table
1. Parts A and C correspond to the cluster distribution S1(l). Parts B
and D give the cluster distribution S2(l). The free T-subunit
concentration is equal to 20 μM for parts A and B, and it is equal
to 5 μM for parts C and D. The red solid lines are obtained from the
theoretical approach developed in this work, the blue solid lines
correspond to the previously utilized mean-field theory,20 and the
open purple circles are calculated from the Monte Carlo computer
simulations.
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relevant in comparison to attachments. In this case, the relative
position of the subunit and the chemical states of its neighbors
are more important, which is a signature of correlations.

■ SUMMARY AND CONCLUSIONS
In this work, we developed a new theoretical framework for
investigating dynamic processes in cytoskeleton proteins. Our
approach is based on analysis of probability distribution
functions for clusters of subunits, which leads to a full
description of all biophysical and biochemical processes in
filaments. The main advantage of the method is the fact that it
accounts for spatial correlations between chemical states of
different monomers, while still allowing to obtain analytical
expressions for all relevant physical−chemical properties of
cytoskeleton filaments.
First, the method was developed for the special case of equal

detachment rates for hydrolyzed and unhydrolyzed subunits. In
this case, the dynamics at stationary state is solved exactly for all
range parameters. The predictions fully agree with Monte Carlo
computer simulations. The method is extended then to more
realistic general cases of unequal detachment rates where an
approximate scheme, that still takes into account some
correlations, is presented. It is found that this approach again
provides a fully quantitative view of all dynamic processes in
cytoskeleton filaments, as supported by Monte Carlo computer
simulations. In contrast, the widely used simplified mean-field
models that neglect correlations cannot properly capture the
dynamics of cytoskeleton filaments under conditions near and
below the critical concentration, where the average filament
growth velocity vanishes, and they can only be used reliably at
large concentrations of free monomers in the solution. Finally,
it was observed that the correlations influence dynamics of
cytoskeleton filaments under conditions near and below the
critical concentrations. We presented physical arguments to
explain this, suggesting that at these conditions detachments
and hydrolysis processes become more prominent, while at
large concentrations they do not play any role.
Despite the success of the presented method, it should be

noted that it gives an oversimplified picture of complex
dynamic processes taking place in cytoskeleton filaments. Our
approach obviously omits many important phenomena that

should be taken into account. Real actin filaments and
microtubules have multifilament structures, and taking this
into account significantly complicates calculations for all
dynamic properties. We expect that the role of correlations in
multifilament proteins could be even more important in
comparison with a single-filament polymer because of lateral
interactions between subunits from the neighboring protofila-
ments. In this work, we assumed a random hydrolysis
mechanism when the hydrolysis can take place with equal
probability at any subunit. There are several proposals arguing
that cooperativity might play a stronger role in the hydrolysis in
cytoskeleton proteins, and our method can be extended to
analyze these possibilities. It will be important also to test our
theoretical predictions in more detailed theoretical treatments
as well as in experimental studies.
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