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ABSTRACT: Most chemical and biological processes can be viewed as reaction
networks in which different pathways often compete kinetically for trans-
formation of substrates into products. An enzymatic process is an example of
such phenomena when biological catalysts create new routes for chemical
reactions to proceed. It is typically assumed that the general process of product
formation is governed by the pathway with the fastest kinetics at all time scales. In
contrast to the expectation, here we show theoretically that at time scales
sufficiently short, reactions are predominantly determined by the shortest
pathway (in the number of intermediate states), regardless of the average
turnover time associated with each pathway. This universal phenomenon is
demonstrated by an explicit calculation for a system with two competing reversible (or irreversible) pathways. The time scales
that characterize this regime and its relevance for single-molecule experimental studies are also discussed.

■ INTRODUCTION

Many chemical and biological systems are composed of
numerous species interacting in complex networks, such as
cell signaling networks, enzymatic reaction networks, and
genetic regulatory networks.1−4 In recent years, the monitoring,
analysis, and detection of single molecule transformations
became one of the most vigorously growing research areas in
physics, chemistry, and biology.5,6 The ability to detect one
molecule at a time leads to significant advances in uncovering
fundamental properties of complex chemical and biological
processes. Through the analysis of single-molecule activity we
are able to understand better the sequence and timing of
various processes, such as chemical transitions for molecular
motor proteins7−10 and for ribosomes11 or the sequence of
enzymatic turnovers in single-molecule reactions.12,13

At the single-molecule level, stochastic effects are recognized
to play an important role. One approach to study these effects
is to model processes on complex networks as Markov chains.
The fundamental coupling between the structure and dynamic
properties of complex systems has been the focus of many
studies, both theoretically14,15 and experimentally.16,17 How-
ever, we still have little knowledge on any universal relations
between dynamic properties and the structures of networks.
Recently, we have been interested in understanding the time
evolution of chemical and biological processes by exploiting the
properties of first-passage times,18,19 both in simple systems20

as well as in complex networks,21−23 with applications to
molecular motors and macromolecular turnover phenomena.24

It was found that at early times the chemical and biological
processes proceed mostly along the shortest pathways (in the
number of intermediate states) that connect initial and final
states. However, time scales for this universal behavior and its
consequences for mechanisms of chemical reactions have not
been discussed. These studies also demonstrate that the first-

passage approach is a powerful tool to understand microscopic
mechanisms of complex processes.
In complex chemical and biological systems, often many

pathways act simultaneously and the contribution of each
pathway has to be considered in order to comprehend the
behavior of the system. Generally speaking, the existence of
different enzymes or reactants with varied activities will lead to
distinctive properties for each pathway. It is usually expected
that the fastest pathway, i.e., the one with shortest average times
for the transition between initial and final states, will dominate
the process of creation of the final product. However, the
competition between various pathways is much more subtle
than predicted from these simple arguments and it is instead
the result of a complex interplay between the length of
pathways and times to proceed along them.
There are many chemical and biological processes that occur

extremely fast with time scales of microseconds or even
femtoseconds, such as protein folding,25 isomerization of
rhodopsin,26 energy transfer in photosynthesis,27 and so on.
Whether these ultrafast processes are still fully determined by
their kinetics is not fully understood, and not much is known
about mechanisms of these processes. Recently, it was
observed28 that almost the same time (a few microseconds)
is consumed for fast- and slow-folding proteins as the folding
events really occur, although their folding rate coefficients
might differ by several orders of magnitude. Interestingly, our
investigations for complex networks with competing pathways
indicate that the underlying structure but not the kinetics for
those pathways would determine the properties of systems at
very short time scales. A commonly applied relation is obtained,
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suggesting that it is always the shortest pathway that makes the
major contribution to realizations whose duration is shorter
than a certain threshold value, even if it is the slowest one on
average. The time scales that determine the threshold value are
also discussed, and it is shown that these time scales are in
general dependent on the underlying reaction network.

■ THEORETICAL METHOD
To better understand this counterintuitive phenomenon, we
consider a very basic stochastic scheme that includes the main
fundamental aspects of single-molecule reactions. There are
two competing pathways available for the chemical reaction to
proceed from the initial state i to the final state j, as shown in
Figure 1. For example, it might correspond to enzymatic

processes where one pathway describes the chemical reaction
without the catalyst and the second pathway is due to the
presence of the enzyme. Here, we will focus on investigating
the turnover times that describe how a single molecule is
transformed from its initial state i into its final state j in the
presence of two such pathways.
The states i and j are connected by two competing routes,

called chains A and B, respectively; see Figure 1. Along chain A
there are m states, which are labeled as ak (k = 1, ..., m).
Similarly, there are n states along chain B, labeled as b , with =
1, ..., n. To keep the notation simple and to limit the number of
parameters, we associate a rate λ to all forward transitions from
the state i to the state j along chain A and another rate μ to all
other transitions, i.e., the backward transitions on the paths
from j to i along both chains A and B and the forward
transitions along chain B (different choices are discussed later
in this paper).
By taking λ to be sufficiently larger than μ, the dwell times on

the states in chain A can be made so short that transitions along
the chain A become increasingly faster as λ grows. Moreover,
the fraction of realizations that reach the final state j from the
state am can easily exceed the number of realizations that reach j
from the state bn, even when m > n. To formalize this point, we
introduce a random variable R that takes values in {A, B}: when
R = A we will say that a realization has reached the state j from
chain A, i.e., through the state am, whereas when R = B it will
mean that a realization has reached the state j from chain B, i.e.,
through the state bn.

■ RESULTS AND DISCUSSION

Probabilities To Reach the Final State through the
Competing Pathways. The probabilities UA and UB that R is
equal to A and B, respectively, can be computed by means of
standard techniques.22,29 The analytical expression for the
probability UA that the system reaches the final state j through
pathway A, as shown in Figure 1, is given by

= + −
− + + −+U

n x
x x n x

( 1)(1 )
(1 ) ( 1)(1 )A m 1

(1)

for any non-negative integer value of m and n, where the
parameter x ≡ μ/λ and the normalization relation UA + UB = 1
holds. One can readily see that as λ grows (the parameter x
becomes smaller) the probability UA to reach to the final state j
through the chain A becomes larger and approaches unity. It
can be proved that this probability function is a decreasing

function of x, as demonstrated in Figure 2. The derivative of UA
with the respect of x can be written as
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for 0 ≤ x ≤ 1.
The probability UA will be close to 1 as the parameter x

approaches 0, as indicated in Figure 2, which means that the
final state j is reached mainly through the longer path A if the
corresponding kinetic transitions in this path becomes faster.
However, the picture changes radically when we consider the
contributions for the realization of the process from the two
pathways for varied periods of time.

First-Passage Time Densities along the Competing
Pathways. The first-passage time approach18,19 is a powerful
tool to investigate the temporal evolution of many chemical and
biological systems. Here, we define variables TA and TB as the
conditional random times to reach the final state j from the

Figure 1. A generic network with competing chains. The transitions
from the initial state i to the final state j can be realized through two
pathways with intermediate states ak (k = 1, ..., m) and b ( = 1, ..., n)
labeled by blue and red circles, respectively. It is assumed that the
upper pathway A has more states than the lower pathway B; i.e., m > n.
The forward transition rates are associated with λ along pathway A,
while all other transition rates are given by μ.

Figure 2. Probability UA for the system to reach the final state j
through longer pathway A as a function of the variable x = μ/λ for the
network showed in Figure 1. The number of states for pathway A and
B are taken as m = 5, n = 4, respectively. For μ = 1 and λ = 2, the
probability UA is definitively larger than 0.5. This justifies the choice of
this parameter set in the main paper.
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initial state i when the last visited state prior to j is the state am
and bn, respectively. The normalized probability densities of TA
and TB will be denoted with ϕA and ϕB, respectively. These
densities can be computed using the technique of the
absorption times explained in previous studies.22,30 First, we
discuss the average conditional absorption time along the
competing pathways, which are defined as

∫ ϕ⟨ ⟩ =
∞

T t t t( ) dX X0 (4)

for X = A, B. ⟨TA⟩ and ⟨TB⟩ describe the average times that it
takes for the system to reach the final state from the competing
pathways. The less time it consumes, the faster it is for the
system to reach the final state through the pathway. Similar
behaviors as obtained for the probabilities UA and UB can be
observed for these average properties of the system. As shown
in Figure 3, the average value of TA becomes smaller than the

average of TB when the transition rate λ in pathway A becomes
larger. Therefore, when λ is large enough, the longer pathway A
is faster and more productive than the shorter pathway B, on
average. However, distinctive phenomena will be observed
when we abandon the view of the process based solely on
average values.
We also define the random variable T as the time that the

system spends before visiting the state j for the first time,
starting from the state i. Given that a realization leaving i and
reaching j took exactly a certain time t, i.e., given that T = t, we
would like to determine the probability that the reaction route
comes along pathway B with slower kinetics. Starting with the
condition T ≤ t and using Bayes theorem, we have that

= | ≤ = ≤ | =
≤

Pr R B T t
Pr T t R B

Pr T t
U{ }

{ }
{ } B

(5)

Notice now that by the definition of the times TB given earlier,
on the right-hand side of eq 5 we also have

∫ τ ϕ τ≤ | = ≡ ≤ =Pr T t R B Pr T t{ } { } d ( )B

t

B0 (6)

whereas for the denominator we have

∫ τ ϕ τ≤ =Pr T t{ } d ( )
t

0 (7)

where ϕ is the unconditional first-passage time density ϕ(τ) =
UAϕA(τ) + UBϕB(τ). Using the same procedure by conditioning
on t < T ≤ t + δt and taking δt → 0, it finally leads to

ϕ
ϕ

= | = =Pr R B T t
U t

t
{ }

( )

( )
B B

(8)

Notice that this equation is very general, as it requires only that
in a reaction network there exists a pathway B and at least
another competing pathway. No further assumptions have been
made on the rates or on the structure of the network in order to
derive it. Nevertheless, when we focus on the network shown in
Figure 1 and on the choice of the parameters as described
above, we can easily realize that eq 8 can be nonmonotonic as a
function of t. Indeed, on the basis of the results of ref 22, for the
network in Figure 1, ϕA(t) goes to zero faster than ϕB(t) as t →
0 because pathway A is a longer chain. Thus, eq 8 equals unity
at t = 0 and is thus decreasing for increasing t in the
neighborhood of t = 0. Moreover, as t → ∞ this function can
rise again if ϕA(t) decays more rapidly than ϕB(t) in this limit
(an example where this happens is discussed in more details
later). At the moment we focus our attention at the regime of
times close to zero, where eq 8 is monotonically decreasing as a
function of t. We call this time regime the regime of ultrafast
realizations of the process depicted in Figure 1. In the
following, we are going to characterize this regime more
precisely.
Since ultrafast processes are critically important and

widespread in chemical and biological system, we are interested
in ultrafast realizations that are those occurring at small times t
for the system shown in Figure 1. We use eq 8 to define a time
ts, which fulfills

θ= | = =Pr R B T t{ }s (9)

so that the probability that the chemical reaction has occurred
through pathway B is larger than θ if the realization T had
duration smaller than ts. The relationship between θ and ts can
be obtained analytically from eq 8 once ϕ and ϕB have been
computed from the Master equation associated with Figure 1.
We should therefore notice that the value of ts associated with a
certain θ and thus also the range of time scales associated with
ultrafast realizations is dependent on the overall structure of the
network and on the choice of the rate constants.
The black line in Figure 4 shows the relationship for the

network in Figure 1 with the number of states m = 5, n = 4 (the
same as was used in Figures 2 and 3) and the transition rates λ
= 2, μ = 1 (arbitrary units). As indicated by the dotted lines in
Figures 2 and 3, the final state j is mainly reached from the
longer pathway A with faster rates than the shorter pathway B,
on average. However, the probability θ to reach the final state j
through the shorter pathway B increases as the realization of
the process becomes ultrafast, as shown in Figure 4, and the
value of θ will be larger than 1/2 as time t becomes smaller,
which means that the shorter pathway B will dominate the
realization of the process below that time. At the limiting case
as time t approaches 0, all of the chemical reactions will occur
only through pathway B, which gives slower kinetics but
contains fewer intermediate states. This is a universal
phenomenon that is expected to be observed regardless of
the values of the kinetic parameters for all networks. However,
this is a surprising result that cannot be understood from the
discussion of average properties of the system.

Figure 3. Average conditional first-passage times ⟨TA⟩ and ⟨TB⟩ for the
system to reach the final state j starting from the state i over pathway A
or B as a function of the rates λ for μ = 1. The number of states m and
n are same as used in Figure 2. For λ = 2 the average time over
pathway A is clearly smaller than the average time over pathway B.
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We should stress again that both eqs 8 and 9 are very general
results that hold independently of the example studied in
Figure 1. Nevertheless, we have chosen to study the case given
in Figure 1 (and a simple variant of it discussed later in the
paper) because we believe that this example is the most
instructive one, since it highlights the contradiction between
being fast on average and being responsible for the ultrafast
realizations. In the context of Figure 1 and for values of θ
particularly large, it is possible that the events considered in eq
9 are particularly rare. Later on we show, however, that even if
rare these events are well above the detection capacity of
modern experimental techniques for typical catalytic reactions.
Approximate Expression for the Relationship be-

tween θ and ts. For more realistic application it may be useful
to obtain an approximate expression of ts when θ is large
(approaches 1), and then the relation between these two
variables can be observed directly. Since we aim to analyze the
behavior of the system at early times, we just need to calculate
the densities in eq 8 for small values of t. In particular, we can
use the results developed recently in refs 21 and 22 and expand
eq 8 at small times. Indeed, using now the graph theoretical
approach,22 we find that

ϕ μ=
!

+ +− +⎛
⎝⎜

⎞
⎠⎟t U

t
n

I t o t( ) ( ) ( )B B
n

n

B
m1 1

(10)

for t approaching 0, where o(tm) are all other terms that satisfy
o(tm)/tm → 0 as t → 0 and IB(t) is a polynomial containing
terms from power tn+1 to power tm. The same approach tells us
that for m > n the unconditional first-passage time density ϕ(t)
can be expanded as

ϕ μ λ=
!

+ +
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where IB(t) is the same polynomial as before and o(tm) are
terms of order larger than m when t approaches 0. Substituting
eqs 10 and 11 into eq 8 and then combining with eq 9 finally
leads to a first-order approximation in

λ
θ̂ ≈ − !

!
+

−
⎜ ⎟⎛
⎝

⎞
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m
n

x
1

(1 ) n
m n

s
1

1/( )

(12)

where x ≡ μ/λ and ̂ts is an approximate expression for ts defined
in eq 9 at small times. Notice that this result will depend only

on the forward rates along the two pathways A and B because
all backward rates can only appear at the terms IB and o(tm), as
discussed in refs 21 and 22. From the expression above, we can
obtain directly that ̂ts is always a decreasing function of θ given
m > n, as observed in Figure 4 regardless of the transition rates
λ and μ. Therefore, it is a general relation as discussed above
that the shorter pathway B will dominate the process for the
system to reach the final state j at small times and the
corresponding probability θ through this path even reaches to 1
as time becomes close to zero. From this relation, we can also
observe that ̂ts will become smaller as the forward rate λ in the
longer pathway A increases or the forward rate μ in the shorter
pathway B decreases. Therefore, we need to detect the process
at ultrafast or smaller time regime if we want to observe the
system to reach the final state j mainly through the shorter
pathway B as transition kinetics becomes faster for longer
pathway A or slower for pathway B itself. In Figure 4 the red
line gives the plot of ̂ts as a function of θ and it is compared
with the exact solution ts derived earlier, which is indicated by
the black line. It is clear that at large values of θ (close to 1), ̂ts

provides a perfect estimate of ts while ̂ts is systematically smaller
than ts as θ becomes smaller.
A general expression for ̂ts can also be obtained for the two

pathways with arbitrary transition rates by using the expansion
technique from ref 22. Given the forward rates λk, with k = 1, ...,
m in pathway A, and μ , with = 1, ..., n in pathway B, it leads to

θ
μ μ μ
λ λ λ

̂ ≈ − !
!

−⎛
⎝⎜

⎞
⎠⎟t

m
n
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...

...
i n

i m

m n

s
1

1

1/( )

(13)

where μi and λi are the forward rates associated with the state i
in Figure 1. This general expression is quite similar to eq 12,
and the conclusions obtained previously are not influenced. It
also shows that the knowledge of only the forward rates is
therefore sufficient to estimate the time scale ts. This should
allow us an easy way to verify theoretical predictions by means
of single-molecule enzymatic reactions when the reaction rates
at any state can be controlled or the number of intermediate
states for those pathways could be regulated.

Observation of Ultrafast Phenomena in Real Systems.
Our theoretical method clearly proves that generally chemical
reactions might proceed along the shortest pathway, even if
they are not the fastest. However, one might ask the question if
these ultrafast processes can be observed in real chemical and
biological systems. Although current single-molecule exper-
imental methods are quite advanced, their temporal and spatial
resolutions are not infinitely perfect. It is important to estimate
the probabilities and time scales when these ultrafast
phenomena might take place using realistic conditions.
To perform such calculations, we will employ eq 12 and

assume that tŝ gives us the time scale for ultrafast realizations of
the chemical process. In addition, from eq 11 it can be found
that the probability of observing such ultrafast reactions, Puf,
can be estimated at small times as

∫ ϕ μ≡ ≈
+ !

̂
+

+
P t t

t
n

( ) d
( 1)

t
n

n

uf
0

1
1

s

(14)

Now let us consider a chemical reaction that proceeds in one
transition without intermediate states (n = 0) and the average
time for this process is on the order of 1 s (μ = 1 s−1). We
added enzyme molecules to accelerate this process, and it is

Figure 4. Analytical and approximate relationships between θ and ts.
The black line is given by the direct analytical solution of eq 9 upon
computing ϕA and ϕB via solving the corresponding Master equation.
The red line is given by the approximate solution derived from eq 12.
In this figure the network from Figure 1 with m = 5, n = 4, λ = 2, and μ
= 1 (rates in arbitrary units) is considered. The existence of ts is a
universal property, only its value depends on the rates.
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assumed that the catalyzed reaction is taking place via a new
pathway with one intermediate state (m = 1). The catalytic
rates are typically on the order of λ = 103 s−1,31 i.e., the process
is accelerated 1000 times. Then from eq 12 the ultrafast
realizations are taking place for times faster than ts ≈ 1 μs, while
the probability of such events from eq 14 is Puf ≈ 10−6. If the
number of intermediate states in the enzymatic pathway is
larger, which corresponds to a more realistic situation, say m =
3, then the ultrafast reactions can be observed for t ≤ 100 μs
with a probability of Puf ≈ 10−4. It is clear that, although these
times and probabilities are small, the precision of current
experimental techniques is high enough so that they can be
observed. One can see also that the specific range of parameters
for observing ultrafast processes depends on relative values of
chemical transition rates in the shortest pathway and in the
catalyzed pathway as well as on the difference in the number of
intermediate states in each path. However, these calculations
support our arguments that most probably these ultrafast
phenomena can be experimentally accessed and tested with
current experimental methods.
An Example from a Simple Irreversible Network. It will

be useful also to illustrate this phenomenon by analyzing a
simpler model that shows the same qualitative behavior but can
be completely solved analytically. We consider the network in
Figure 1, where all backward rates are set to 0 (see Figure 5).

As shown in eq 12 the reversibility of the transitions will not
change the properties discussed below. Starting from the state i,
the probability of reaching the state j along path A is now
simply given by

λ
λ μ

=
+

UA
(15)

since the process has no possibility to return to the state i after
leaving it. Therefore, the probability to reach the state j along
path B is described by UB = 1 − UA. The conditional probability
densities ϕA(t) and ϕB(t) as defined above can be easily
obtained by solving the corresponding backward Master
equations through Laplace transform, as shown earlier.21 The
(normalized) probability density ϕA(t) will take the explicit
form

∑ϕ λ
μ μ

= −
− !

+ −λ λ μ
− +
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− − − − +⎡
⎣
⎢⎢

⎤
⎦
⎥⎥t U

t
m k

( )
( 1) e

( )
( 1) e

A A
m

k

m k m k t

k

m t

m
1 1

1

1 ( )

(16)

for processes conditioned to reach the state j along path A.
Similarly, the probability density ϕB(t) along path B can be
obtained as

∑ϕ μ
λ λ
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Using these probability density distributions, the conditional
mean first-passage time and other dynamic properties of the
system can also be calculated accordingly.
From now on, we assume that the rate λ is sufficiently larger

than the rate μ so that m/λ < n/μ. By using eq 8 and the
definition of unconditional first-passage time density ϕ(t) =
UAϕA(t) + UBϕB(t), we can easily obtain the exact condition
that path B has a probability θ for realizations of the process at
duration t. We can also compare the probability UAϕA(t) for
process occurred through path A and probability UBϕB(t) for
path B at time t directly. An example is shown in Figure 6 for

the network illustrated in Figure 5. The blue and red curves
give the probability densities from paths A and B, respectively,
with parameter values the same as used in Figure 4, except for
the backward rates taken to be equal to 0. It clearly shows that
the shorter path B has a higher probability than the longer path
A at small times, even though the former one gives slower
kinetics just as predicted from our previous discussions. At the
same time, the total probability UA to reach the final state from
the longer path A is higher than that from path B because of the
faster kinetics when λ > μ. It is consistent with the observation
that the longer (faster) path A will have a higher probability at
intermediate times, where most of the realizations of events are
obtained. Interestingly, we found that under these conditions
the shortest path will have a higher probability again at even
larger times (see Figure 6). The third regime is unexpected, but
it is easy to explain if one looks at the explicit expressions 16
and 17. Indeed, the dominant term at large t in both expression
is proportional to tn−1e−μt for pathway B and tm−1e−λt for
pathway A, with λ > μ. Clearly, pathway B will have the larger
tail at large t. Thus, after a sufficiently large time, the probability
to reach the final state through path A will be smaller because
most of the processes through this path have already occurred.
At very large times, the main contribution to reach the final
state is again mostly from the path with slower transition rates.
The contributions from two pathways may change at
intermediate and large times according to the variation of
kinetics in each pathway; however, it applies universally that the

Figure 5. A generic network with two competing chains similar to the
network shown in Figure 1 but with irreversible transitions from the
initial state i to the final state j in both pathways.

Figure 6. First-passage time probability densities from the state i to the
state j through two paths A and B for the irreversible network shown
in Figure 5. The blue and red lines correspond to the functions
UAϕA(t), computed from eq 16, along the longer path A, and UBϕB(t),
computed from eq 17, along the shorter path B, respectively. The
number of states for two paths are given by m = 5 and n = 4. The
transition rates λ = 2, μ = 1 are used.
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shortest pathway always gives the highest probability to reach
the final state at early times, regardless of the kinetics of the
system.

■ SUMMARY AND CONCLUSIONS
We have investigated stochastic dynamics in complex chemical
and biological networks by analyzing probabilities and times for
single-molecule reactions. A complex system usually contains
many competing pathways as substrate is converted to product.
We have indeed considered two reversible (or irreversible)
pathways of unequal lengths where transitions between the
initial and final states occur through the longer path faster on
average than via the shorter route. As expected, the total
probability to reach the final state through the longer path will
increase and become higher than the shorter path if faster
transition rates are associated with this path. Besides, it takes
less time for the realization of the process through the longer
path with faster transitions on average. From these observa-
tions, it seems that the pathway with the fastest kinetics would
always dominate the transformation process of product from
substrate, irrespective of other properties of the system.
However, it is found that, in contrast to expectations, the
major contributors for the realization of final product formation
are not always the pathways with fast kinetics. Indeed, we have
shown in this work that there is always a time scale at early
times when the shortest pathway will be the main realization of
the chemical process. In addition, using realistic parameters we
estimated time scales and probabilities of observing these
phenomena. Our calculations indicate that ultrafast phenomena
might be observed using modern experimental techniques.
With the vigorous growth of single molecule techniques, it is

now possible to observe ultrafast reactions in many chemical,
physical, and biological systems, and new phenomena and
mechanisms are anticipated to be discovered. Through
theoretical analysis of the network systems, we observe that
the probability to reach the final state is a decreasing function of
time for the shortest pathway at early times. And the majority
of the ultrafast realizations, i.e., realizations that reach the final
state j in a time less than a certain value ts, is surprisingly found
to come from the shortest pathway. This property of ultrafast
reactions is only determined by the structure of the network
but not the kinetics of the system. One can provide the
following simple explanation of this phenomenon. The early
time behavior of the first-passage density along a path that
connects the initial state i and the final state j is described by a
power law distribution tα with the exponent α given by the
number of states along the pathway.21,22 Therefore, it is easy to
observe that a shorter path with fewer states gives larger values
for the probability density to reach the final state at early times.
Our conclusions do not depend on the number of routes nor

the topology of networks, and similar expressions as 12 and 13
can be obtained simply by employing the expansion technique
developed for the general network systems.22 Therefore, it
suggests that this counterintuitive observation is a universal
phenomenon and might indicate a fundamental mechanism
governing many chemical and biological systems. Recent
studies show that many ultrafast reactions cannot be under-
stood simply from the kinetic properties of the system. Our
findings might assist in understanding these complex
phenomena. Our study can also provide a simple way to
distinguish the contributions from the various reaction
pathways. It should lead to a better understanding of
mechanisms in complex stochastic systems. We believe that it

will be possible to verify our predictions experimentally by
following the single-molecule turnover in in vitro experiments
where two different reaction routes can be distinguished. The
two competing pathways should contain a long route that is
very fast with smaller mean turnover times and a shorter route
that is slow on average. This could be realized by considering a
single-molecule reaction where the transition rates could be
increased by the catalysis of a specific enzyme. Then the shorter
path for the realization of single-molecule turnover without
enzymes would have a slower kinetics compared with the
longer one with enzymatic reactions.
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