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Motor proteins are active biological molecules that perform their functions by converting chemical energy
into mechanical work. They move unidirectionally along rigid protein filaments or DNA and RNA molecules
in discrete steps by hydrolyzing ATP (adenosine triphsophate) or related energy-rich compounds. Recent
single-molecule experiments have shown that motor proteins experience significant spatial fluctuations during
its motion, leading to broad step-size distributions. The effect of these spatial fluctuations is analyzed explicitly
by considering discrete-state stochastic models that allow us to compute exactly all dynamic properties. It is
shown that for symmetric spatial fluctuations there is no change in mean velocities for weak external forces,
while dispersions and stall forces are strongly affected at all conditions. These results are illustrated by several
simple examples. Our method is also applied to analyze the effect of step-size fluctuations on dynamics of
myosin V motor proteins. It is argued that spatial fluctuations might be used to control and regulate the

dynamics of motor proteins.

1. Introduction

Several classes of active enzymatic molecules that produce
mechanical work by utilizing energy of different biochemical
processes are known as motor proteins, or molecular motors.!=
These molecules, such as kinesins, dyneins, myosins, DNA and
RNA polymerases, helicases and many others, play important
roles in a variety of biological processes that include cellular
transport, cell division, muscle contraction, and genetic
transcription.!=> They typically translocate in a linear fashion
along rigid protein filaments or DNA and RNA molecules, and
their motion is fueled by the energy of hydrolysis of ATP
(adenosine triphosphate) or related compounds. However,
mechanisms of coupling between biochemical transitions and
mechanical transformations in motor proteins are still not well
understood.>*

A large progress in understanding mechanisms of motor
protein dynamics has been achieved in the past decade with
the development of single-molecule experimental methods.3-23
These investigations have revealed dynamic properties of
molecular motors, such as velocities, dispersions, run lengths,
dwell times, and stall forces, at different conditions for individual
single protein molecules. It was shown that motor proteins can
exert significant forces during their motion, and there are large
fluctuations and variability in the dynamic properties. In
addition, functioning of motor proteins includes multiple states
and conformations that are related via complex biochemical
pathways.

Significant advances in experimental investigations of motor
proteins, which enabled the description of dynamics and
biochemical transitions at the single-molecule level, have greatly
stimulated theoretical discussions on the functioning of molec-
ular motors.3*24-3! Theoretical studies of motor proteins mostly
involve two main directions: continuum ratchet models?+29-3!1
and stochastic discrete-state models.*>?8 Current theoretical
approaches can account for most available experimental obser-
vations, and they provide a reasonable framework for under-
standing mechanisms of molecular motor’s transport.*
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One of the most fascinating properties of motor proteins is a
large variability and fluctuations in dynamic properties. The
precision of existing single-molecule experimental techniques
allows to quantify these fluctuations, indicating that they contain
an important information about biochemical and biophysical
processes in motor proteins.®19-23 Thus, the use of fluctuations
and variability data might provide a valuable tool for under-
standing mechanisms of molecular motor’s functioning. How-
ever, theoretical descriptions of these phenomena in motor
proteins are rather very limited.*32 The first simplified approach
to take into account spatial fluctuations has been presented in
ref 27. Here, the upper bounds of the effect of fluctuations on
dynamics have been obtained by assuming (obviously, unreal-
istically) that the myosin V molecules move via alternating long
and short steps. Although the method was quite naive, it showed
that fluctuations might modify the dynamics only near the
stalling force conditions where the precision of experimental
measurements is not high.

Recently, Shaevitz, Block, and Schnitzer?? presented a first
analytical study of spatial fluctuations in motor proteins step
sizes. Using a moment-generating functions method, they
calculated distribution functions for completion times that
allowed them to analyze the effect of variability in the step size
of motor proteins on their dynamics. Specifically, they consid-
ered a randomness parameter  defined as*%32

_2D
dv

where D and V are mean dispersion and velocity of the motor
protein molecule and d is the average step-size. This function
provides a convenient measure of overall fluctuations in
molecular motors. It was shown that the randomness r can be
written as a sum of two terms corresponding to fluctuations in
the step-size and due to the stochastic nature of enzymatic
molecules.3? Although this theoretical work provides a valuable
description of fluctuations, its application is restricted because
of the assumption of irreversibility in biochemical transitions
of motor proteins. Generally, all chemical reactions are revers-
ible, and neglecting this property might lead to erroneous
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conclusions about dynamic properties and mechanisms of motor
proteins.* In addition, the effect of fluctuations on other
properties, such as velocities and stall forces, has not been
described. In this paper, we present a comprehensive theoretical
approach that allows to estimate explicitly the effect of spatial
fluctuations on all dynamic properties of motor proteins. It is
based on theoretical formalism developed by Derrida for random
walks on periodic one-dimensional lattices,?* which provides
exact expressions for the asymptotic (long-time) drift velocity

. d
=1lim — &0
% 111’2 a E4¢)) 2)

and for dispersion (or the effective diffusion constant)

1
D= 211m
where x(?) is the position of the motor protein along the linear
track at time 7.

The fluctuations of motor proteins have also been successfully
studied in models3#33 that combined mechanical properties of
motor proteins with ATP hydrolysis kinetics relevant for the
motility. The advantage of this approach is close connection to
realistic protein structures. However, these methods depend on
potentials of interactions and on a choice of mechanistic
parameters. To obtain dynamic properties of motor proteins,
complex equations should be solved numerically®* or stochastic
Monte Carlo simulations® should be utilized, and it might
complicate the elucidation of mechanisms of motor proteins.
Our discrete-state stochastic method, although not utilizing
directly structural information, can provide exact solutions for
all dynamic properties of motor proteins, and thus, it might help
to understand how spatial fluctuations influence the motor
protein’s transport.

[Dcz(t)[l— BN (3)

2. Theoretical Model

Let us consider a motor protein molecule that moves along
protein filaments in an effectively one-dimensional motion.
There are periodically distributed binding sites with a period d.
For example, d &~ 8 nm for the motion of kinesins and dyneins
on microtubules, and for the transport of myosins V and myosins
VI on Actin filaments the average step-size is d ~ 36 nm.
Because of the structure of protein filaments there are other
binding sites that can be reached by the molecular motor,
although with a smaller probability as indicated by single-
molecule experiments.!!?3 This suggests that the step-size of
the particle varies around d. In our simplest model we assume
that these fluctuations are discrete and symmetric, and that there
are only three possible step-sizes,

d_=d—a, dy=d, andd, =d+a (4)

where a parameter a describes the amplitude of spatial fluctua-
tions. The motor protein could make a step d— or d4 with a
probability p for each move, while the probability for the normal
step dp is 1 — 2p. Here, p < 0.5 reflects the fact that steps
larger or smaller than d, are less probable.'!?? It should be noted
that our approach can be easily extended to include asymmetric
fluctuations and more values of discrete step-sizes. The discreet-
ness in step-size fluctuations is an important property that
enables us to develop explicit analysis of dynamic properties
of molecular motor. It also provides a realistic description of
motor protein’s transport.

Following the discrete-state stochastic approach for motor
proteins,* we postulate that there are N sequential intermediate
biochemical states between consecutive binding sites as shown
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Figure 1. General schematic picture for the discrete-state stochastic
model of fluctuating motor protein with three different step sizes. Each
point corresponds to some motor protein’s conformation, for example,
the enzyme molecule bound to ATP. Arrows indicate possible
biochemical transitions between different motor protein states. The
upper pathway describes states when the motor protein molecule moves
with long (d + a) size steps between consecutive binding sites, while
the lower curves are for the shorter (d — a) size steps, and the middle
pathway is for the normal steps of size d.

in Figure 1. The possibility of different step-sizes is reflected
in three biochemical pathways: the molecular motor on the upper
(lower) pathway hops with step-sizes d+ or d~ respectively,
while in the middle pathway the step-size is equal to the average
dp. The particle at the state j on the pathway A (with A = +, —,
or 0 for the upper, lower, and middle pathways, correspondingly)
can move forward or backward with rates uj’ or wj: see Figure
1. Note that the forward transition rates at site O are given by
ud = puo, Up = pup and u) = (1 — 2p)uy for +, —, and 0
pathways, respectively, because of the stochasticity in the choice
of the step-size. Similarly backward transition rates are wj =
pwo, wo = pwo and w) = (1 — 2p)wy for upper, lower, and
middle pathways, respectively.

Our method allows us to incorporate easily the effect of
external fields in the dynamics of fluctuating motor proteins.*
Under the effect of the external force F the transitions rates are
modified as follows,

W (P = O exp(— 0" Fd,/ ks T) )
W) = wi(O) exp(05 " Fd,/kyT) (6)

where 0}’1) * are load-distribution factors*?5 (for j =0, 1, **+, N
— land 1 = +, 0, —) that specify how the work done by the
force F is divided between forward and backward transitions.
We require that for each pathway load-distribution factors are
related via*2327

1
> P +07T)=1 (7)
j=0

for A = +, —, 0. To simplify calculations it is also assumed

that load-distribution factors are independent of the pathway.

Theoretical analysis shows that dynamic properties of fluc-
tuating motor proteins depend on several linear sequential
products of rate ratios. To simplify our notations we define

ﬂ l_] jﬂ l_] z+1 Wk+1 (I; )

with transition rates related due to per10d1c1ty of the system,
Ao N
UjrN = Uj and WitN = Wj.

3. Results

We present here explicit expressions for dynamic properties
of fluctuating motor proteins. Our method is closely related to
theoretical analysis of parallel-chain kinetic models of biological
transport.*?¢ The detailed derivations are outlined in the
Appendix.
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3.1. Velocity. In our model, the mean velocity has three
contributions corresponding to the transport across three different
pathways with step-sizes dy, d+, and d—, respectively,

V=V, +V, +V_ ©)

where utilizing notations (eq 8) we have

vy -
rgR—jj R—f+R—N—2
Tn. To Ty
N
-1}
Vo=
rgR—(’)V R—f+&—2

(10)

In the above expressions the auxiliary functions R} and 171
have been introduced,
N—1

A Ao A—
Ry= rj,rj—(

N—l jtk

(11)
=0 k=1 J+|_L

for L =+, —, 0. The motor protein that do not fluctuate has a
zero probability to make steps of the size d + a (p = 0), and in
this case o™ = wo™ = 0, which leads to 1/ro™ = 0. Then we
have V_ = V, = 0, that is, the molecular motor advances only
along the middle pathways with the fixed step-size, as expected.

If we assume that all transition rates u} and w} are same for
the three pathways, the formula for the overall velocity
simplifies,

N
douy| 1 —

V= 5 " — (12)
Ry Ry Ry wy
—0+—++f—2 1+—

u
Ty Ty I 1

It can be shown that the expression in the denominator can
be written in the following form

N—1
0 + - Upp 7j
Ry By Bv_olois A 13
I kL BT R B
oy 7o o 1+ |—|

k=11

which is independent of the probability p. Because other
components of the velocity in eq 12 are also independent of p,
it can be concluded that in this case symmetric fluctuations do
not affect the velocity of the motor protein.

3.2. Dispersion. The expressions for dispersion in our model
are much more complex, and they can be presented as a sum
of five contributions,

D=Dy+D,+D_+D,+D, (14)
The expression for dispersion cannot be written as sum of

the terms from three pathways because of the strong correlations
between them. The first term is given by

Das and Kolomeisky
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The second term has a similar structure,
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=0

Similarly, the third term looks like
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In the above expressions, we utilized two new auxiliary
functions that are defined as

) 1 T =
st=u; 1+ kzzl ,-_ELI 27)
and
A 0 + -
bf=(:—%/1:—§]+1:—g+1:—:—2] (28)
for A =+, —, 0. The meaning of the function b} is a probability

to find the molecular motor at state j on the pathway A on any
period of the lattice. It should be noted then that

by=by =by =b,=1/

" Ry Ry
0+—+——2 (29)
ry 1o o

In addition,

1 N—1 ik
%=( ) [ (30)
puo =1 JjT1D

which yields bji = 0 for p = 0, as expected.
The fourth term can be written as

e N N
N 1—II N 1—II
1> 1=
B 2(d0) Vi, 1)
AN N
N 1—1I

where
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The last contribution to dispersion in eq 14 can be expressed

in the following way,

d2
D, =D+ Dy + D) (35)

c

where D.i, D, D3 are given by

D, = = bj— bj X
0’0 =0 o J=1
J, Jy
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3.3. Illustrative Examples. To better understand the effects

of spatial fluctuation on dynamics of motor proteins, we consider

several simple examples for N = 1 model, assuming that

transition rates uy and wy are the same in all pathways. First,

we start with simplest but unphysical situation when there is

no backward transition, that is, wo = 0. In this case, we get for
the drift velocity,

(38)

V=du, (39)

which indicates that it is independent of step-size fluctuations.
The expression for dispersion can be also computed, yielding

d >
D= Sl +a’pu, (40)
Here the first term corresponds to dispersion for the simple
N = 1 model without fluctuations, while the second term is
due to spatial fluctuations. Then the randomness parameter (see
eq 1), important for analysis of motor proteins dynamics, is equal
to

a\2
r=1 +2p(—) 1)
d

in agreement with theoretical calculations in ref 32. This result
suggests that overall fluctuations in the system can be increased
by increasing the probability p of large and small steps of the
size d + a, or by increasing the amplitude a of spatial
fluctuations, while the velocity of the particle is not affected
by symmetric step-size fluctuations. It can be shown that the
second term in the randomness is proportional to the variation
in step-size fluctuations,*?

e R

Because all biochemical transitions are reversible, it is more
realistic to consider N = 1 model with nonzero backward
transitions. In this case, we found that

V=dy(u,—wy) (43)

which again shows the independence of the velocity on
symmetric spatial fluctuations. The dispersion for this model is
modified in the following way,

2
D= %(uo +wo) + @’p(uy + wp) (44)

These two terms again can be viewed as corresponding to
the model without fluctuations and due to step-size variations.
Consequently, the expression for the randomness can be written
as

uy,+w 2w
_ Uy 0 a c_z) 0 (45)

2
r=——"42 ( ) +4 (
Uy — Wy Pla P\a Uy — W,

In this equation, the first term corresponds to stochastic
fluctuations in transition rates, the second term is due to the
step-size variations, and there is a third term that reflects the

correlation between different pathways. It is expected that these
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Figure 2. Effect of spatial fluctuations on force-velocity relations for

myosin V molecules: (a) curves for different step-size fluctuations; (b)
comparison with experimental observations from ref 14.

results hold for general N-state kinetic models with fluctuations.
Thus there is a new contribution to the randomness that comes
from the reversibility of biochemical transitions, and it contra-
dicts to the earlier theoretical result® that the randomness can
be presented only as a sum of step-time and step-size variations.
This observation points out again to the importance of the
reversibility in biochemical transitions for the analysis of motor
proteins dynamics. Neglecting even one backward transition can
lead to incorrect estimates of overall fluctuations in the system.

4. Analysis of Myosin-V Dynamics

To test our theoretical approach, we investigate the effect of
spatial fluctuations on dynamics of myosin V molecules.
Myosin-V is a dimeric two-headed motor protein that moves
along Actin filaments.!? Single-molecule experiments!!!3-2?
indicate that it moves in hand-over-hand fashion making steps
of approximately d ~ 36 nm. Distribution of experimentally
observed steps have been fitted by Gaussian function with the
standard deviation close to 6 nm.'! In our analysis, we take the
amplitude of fluctuations a to be equal to 5.5 nm, which
corresponds to the distance to closest binding sites on Actin
filaments. The value of the probability p can be estimated by
comparing experimental distributions of step sizes with our
model with three pathways.!! We conclude that p ~ 0.3—0.35.

Dynamics of myosin V motor proteins have been studied
before using discrete-state models*’?® and more detailed me-
chanical approaches.?*3> For our analysis of fluctuations, we
utilize the simplest N = 2 model?’ that was successful in the
description of dwell-time distributions and substeps for these
molecular motors. It was also assumed that fluctuations are sym-
metric, and transitions rates are independent from the pathway.
We use the same set of values for the transition rates ug, ui, wo,
and w, and for the load-distribution factors 67, 6y, 67, and 6;
as in ref 27.
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Figure 3. Dispersion as a function of probability p of spatial
fluctuations for different external force.

4.1. Force-velocity Relations. Utilizing the explicit expres-
sion for the drift velocity (eq 12) for N = 2 and substituting
into it the load-dependent transition rates (see eqs 5 and 6), we
obtain force-velocity relations for myosin V molecules. The
corresponding curves are shown in Figure 2a for ATP saturating
conditions ([ATP] = 2 mM). However, similar trends are found
at all ATP concentrations (results are not shown). It can be seen
that step-size fluctuations do not change the drift velocity for
low external forces (F < 1.5 pN). However, closer to the stall
force, these variations in the steps start to modify the speed of
the molecular motor. Increasing the external force lowers the
forward rates and increases the backward rates. However, the
particle moves slower when it is found in the upper pathway
with steps d +a because it has to produce larger work than in
other pathways to overcome the resisting force F. The larger
the value p, the more probable to find the motor protein on this
pathway, and this leads to overall lowering the velocity, as
observed in Figure 2. Note also that the stall force is reduced
when the molecular motor experiences step-size fluctuations.

It is interesting to compare our theoretical predictions for
force-velocity relations with experimental observations, and the
results are shown in Figure 2b. It can be seen that parameters
of the model developed in ref 27 for different sets of experiments
can fit reasonably well experiments of Uemura et al.,'* sug-
gesting that our approach is quite robust. Analysis of Figure 2b
also suggests that taking into account fluctuations provides a
better description of force-velocity curves, especially near the
stall force.

4.2. Dispersion and Randomness. Similar calculations can
be performed for dispersion of the myosin V motor protein.
Changing the probability of fluctuations influences the disper-
sion, as shown in Figure 3 for different external loads. Generally,
increasing the resisting force lowers dispersion, and this effect
can be attributed to reducing the stochasticity in each pathway
by decreasing the forward rates stronger than increasing the
backward rates. The dependence of dispersion on the probability
of step-size fluctuations p is more complex. It is linear and
slowly increasing for small external forces. This observation
might be explained if we recall the result for dispersion for N
= 1 model: see eq 44. The dispersion in this case could be
written as a sum of two contributions. One of them corresponds
to the model without fluctuations, while the second term, which
is linear in p, includes the effect of step-size fluctuations. For
F = 1.5 pN, the dependence of D on the probability is also
linear, but decreasing. It is possible that at large p the pathways
with lower stochasticity dominate, and this lowers the overall
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dispersion. A surprising behavior is observed for larger external
force of F = 2.2 pN where dispersion shows a nonmonotonous
dependence. This can be understood in the following way.
Increasing the probability of step-size fluctuations for small
values of p opens new pathways for the particle, and this
obviously increases overall fluctuations. At the same time, for
larger p, the motor protein mostly found in the pathways with
lower stochasticity, and this leads to decrease in dispersion.
Note, however, that in all cases the change in dispersion due to
step-size fluctuations in myosin V is not very large, and typically
it does not exceed more than 10% at all conditions.

Simultaneous knowledge of the drift velocity and dispersion
allows us to analyze the effect of spatial fluctuations on the
randomness of myosin V for different external loads, and the
results are presented in Figure 4 for both assisting (F < 0) and
resisting (F' > 0) external forces. For small step-size fluctuations
randomness is the increasing function of the external force
approaching infinity at Fs due to decreasing of the drift velocity
near the stall force. However, the increase in the probability p
of step-size variations yields a surprising behavior in the
randomness: there is a minimum at forces closer to F' ~ 2 pN.
This can be understood by comparing the effect of the spatial
fluctuations on the velocity and on dispersion. At the conditions
where the minimum is observed the change in dispersion is
larger than the decrease in the velocity. Note also different
behavior of the randomness for small and for large p at assisting
external forces: see Figure 4.

4.3. Stall Force. We also investigated the behavior of the
stall force Fi as a function step-size fluctuations. The stall force
is defined as a force at which the motor protein stops its motion
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completely. We obtain the stall force by numerically solving

V(F) = 0 (see eq 12) with appropriate force-dependent transition
rates, which leads us to the following equation,

N
do[l - I‘l 0
©
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oot —t——-2
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N
d_[l - ﬂ(m]
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_ |RYF)  RYF) Ry
ro (F) + + -2

E By (P

Relative stall force Fs(p)/Fs(0) as a function of p is presented
in Figure 5. It should be noted that for the system without
fluctuations (p = 0) the stall force is a thermodynamic quantity
that corresponds to equilibrium between the force exerted by
the motor protein and external load.** However, in our model
with spatial fluctuations, the stall force becomes a dynamic
quantity. At Fy, the negative velocity contribution from the upper
pathways V4 is compensated by positive velocities from other
pathways. The increase in the step-size fluctuations lowers the
effective stall force, although the effect is not very large (=10%),
but it might explain discrepancies in experimentally measured
stall forces for myosin V.%1417-22 The reported values range from
1.7 to 3 pN. We suggest that this could happen due to the fact
that depending on experimental conditions step-size fluctuations
might have been suppressed or increased, producing different
effective stall forces.

The presented theoretical model does not take into account
the slipping of motor proteins along the filament, although it
can be easily accomplished by adding additional pathways that
do not involve ATP hydrolysis.?® Thus, the possibility of futile
hydrolysis cycles, when the motor particle consumes ATP
molecule to move forward and then slips backward, is neglected
in our approach. We view the effective stall condition in the
following way. The motor protein molecules hydrolyzes one
ATP during the motion along one of pathways, but then the
ATP molecule is synthesized when the motor protein moves
backward along the other pathway. The validity of this view is
to be checked in future experiments.

5. Summary and Conclusions

We developed a theoretical approach that allows one to
estimate the effect of the spatial fluctuations on dynamic
properties of motor proteins. Our main idea is to discretize step-
size fluctuations and to analyze them via multistate multipathway
chemical kinetic models. Different biochemical pathways
describe different step sizes. Our explicit calculations of the
velocity and dispersion are performed for the model with
symmetric fluctuations and three step sizes, and it is indicated
how the method can be generalized for asymmetric fluctuations
and more values of step sizes. It is shown that for symmetric
fluctuations and zero external forces the velocity is not affected
by spatial fluctuations, while dispersions depend on them.
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Correlations between different pathways play important role for
dispersions. It is also argued that neglect of the backward
transitions in motor proteins might lead to incorrect predictions
on the effect of step-size fluctuations.

Our theoretical method was applied to analyze the effect of
spatial fluctuations on dynamics of myosin V motor proteins.
It is shown that spatial fluctuations do not affect the velocity at
lower forces, but at large external forces near the stall they lower
the velocity significantly. The variations in the step sizes also
decrease dispersion, although dependence on the probability of
fluctuations is more complex. In addition, step-size fluctuations
reduce the stall force of myosin V motor proteins. It is argued
that this complex dynamics is a result of two processes that
work in opposite directions. The increase in the probability of
fluctuations opens new biochemical pathways for the molecular
motor, and this increases the overall fluctuations. At the same
time, for large probabilities the molecule starts to spend most
of its time in the pathways with reduced local transition rates,
thus reducing the overall stochasticity in the system.

The developed theoretical method makes several predictions
that distinguish it from other theoretical models, and these results
can be experimentally checked. Specifically, we predict a
nonmonotonic dependence of the randomness as a function of
the external forces that contrasts with predictions for the models
without spatial fluctuations. An important parameter in our
theoretical calculations is a degree of fluctuations expressed via
the parameter p. It is suggested that it might be changed by
modifying the number of IQ motifs in the lever arm region of
myosins V.3 Increasing the number of IQ motifs will probably
lead to larger fluctuations because the motor head could reach
more sites on Actin filaments. Measuring dynamic properties
of myosins V with different lever-arm lengths will provide a
valuable information on the validity of the developed theoretical
picture.

Our analysis suggests that nature might utilize the spatial
fluctuations as a tool of controlling and tuning dynamics of
motor proteins. It will be important to test our predictions in
single-molecule experiments to fully uncover the effect of spatial
fluctuations for processive enzymatic molecules.

Appendix

We introduce a function P_,@(l, 1) as the probability to find the
motor protein molecule at site / in state j on pathway A (1 = +,
—, 0) at time 7. The time evolution of this probability is governed
by a set of master equations,

dPXl,p
J A A A A
—a = uj_IP}_ld, H+ ijP}H(l, 0 — (u; +w )P}(l, )

(A-1)

for j = 0 and A = +, —, 0. The situation for j = 0 is a special

one with P§ = P§ = P;. In this case, master equations have the

following form,

dPyl,p
dr

WPy, 0+t Py = 1,0 +w P, 0 — p(ug +wq )P,

=uy_ Py (= 1,0+ WP, 0 — (1 — 2p)(ug+

@0+ uy Py A= 1,0+ w, Py d,D— pluy +wy)Pyl, D
(A-2)

for all three pathways. Because of conservation of probability
we have
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+o  [N—1 N—1 N—1
S ZP(lt)—l—ZP(ltH-ZP(lt)—1(A3)
== \ /=0

at all times. It is also assumed that at = 0 the molecular motor
is at the origin / = 0 in the state j = 0.

Following Derrida’s approach,’® we define two auxiliary
functions for each state j,

00
AGE z Pid,» (A-4)

=
-1
Z d, (o

+oo
Citn= z i+ NE Pid,» (A-5)
[:_
Note that for j = 0 we have
By =B, (=B, ® (A-6)
d, d_\ _
Con= c 0=|—|Co® (A-7)
0
The master equation eq A-1 then modifies for j = 0,
dB @
_ 1 pl 2 1 2\ ph
4 U B T WB — (T w)B (A8)
and for j = 0 we obtain
dB®
I u(,i,,l ?\, 1+W1 '~ —Zp)(ug—i-wg)Bo—i-

+ ot + ot + + - - S—
Uy 1By, +wi B _I’(uo +wy )Bo tuy By, +w B
plug +wy)B, (A-9)
Similarly, for j # 0 one can show that

dcjm
dr

_ A A A A A
= u_i,lc_f,l + W.f+1c;1+1 - (”j + W.f)c.;1 + “./713.;171 -
Wi Bl (A-10)

while for j = O the results are

dCy®
d(; =uy_,Co_ +w)C) — (1 —2p)(ug + wy)C, +

d
0 0 010 +lr + + ~+ +
Uy By, —wiB + (d_o)["‘N—lcN—l +wi €y = plug +
+ pt +pt ) [ -
wo)Co+ ity 1By = wy By ]+ d_o [ty Cy— T wi € —
plug +wo)Co+uy By — w, B[] (A-11)
Now applying Derrida’s idea’® we introduce the ansatz

Bw—b}, C:0 —djt—T}

which should be valid at large times. The parameters v, a} and
7}1 are periodic,

(A-12)

J_ gk A_ A —
b =blp d=d\y T =Thy (A-13)
At steady state {[dB_?(t)]/dt} =0, and for j = 0, eq A-8 gives
_ A g VAP 2 A\
0=1_ b + Wi by — (] +w))b;

while for j = 0 from eq A-9 one can obtain

(A-14)

J. Phys. Chem. B, Vol. 112, No. 35, 2008 11119
0=uly_ by, +wib) — (1 — 2p)(ul + wi)by + up_ by, +

wa;r —p(ug + wé)bo +uy_ by, +w b, —p(ua + w(;)b0

(A-15)

with b) = by = by. Again, following Derrida’s method,*? the
solutions of eqs A-14 and A-15 can be written as
A A
bj =er; (A-16)
The unknown constants e; can be determined using the
conservation of probability requirement A-3,

N—1 0 N—1 N—1
+ _:
R TR Ol

and this leads us to eqs 28 and 29.

To find the coefficients af and T}, the ansatz (A-12) is
substituted into the asymptotic (t —) eqs A-10 and A-11,
yielding for the coefficients a_? G =0,

(A-17)

! ) A A\ A
0=u;_ja ] T Wjﬂaj+1 (uj + wj)aj (A-18)
The coefficients T]’1 (j # 0) then satisfy
A_ 2 y Ao
a; _“j—ljj—l +Wj+17;1+1 (” +wj )T{+ Ui b j 1T Winibi
(A-19)
Similarly for j = 0 we derive
0=up_\dly_, +wha — (ul + wi)ag (A-20)

and

d d_
ag= (dZ)ag (d—o)ao =ug_ Ty, +wiT) — (1 —2p)(ug+

d,
wg)Tg—i-u}O\,,lb[OV,l bo (d )[”‘N 1TN7 +W1 1 -pr
0

d
+ + + + -r - -
(“0 +w )Tg + ”;\r/flefl - Wfrbl ] + (d_o)[uNlTNl +

Wi = plutg )Ty ity by = wibr] (A2D)
Comparing eqs A-18 and A-20 with eqs A-14 and A-15, we

conclude that
al=Ab! (A-22)

with the constants A, related via the following equation,

d, d_
A=lg g

These constants can be found by from the following expres-
sions

(A-23)

N—1 N—1
> =3 b (a2

J=0

~,

d N—1 N—

( d:) af=A z (A-25)
=1 J=1
v o

( )z =A Z (A-26)

and using the normalization condition (A-3). This procedure
yields
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AO=§a?+(zo)§ ( )Za —z u) — wh)b) +

J=

(ZZ)NZI (1" =) +(fl0)NZI (u, —w, )b, (A-27)

J= J=

To determine the coefficients T}-l, we define

Y; = W?+1T;1+1 - “;17;1 (A-28)
Then eq A-19 can be rewritten as
A2 2 1

Vi Ty =d; — u] Wit wﬂ_lbj+1 (A-29)

while eq A-21 yields
d
0 0 _ 0 0 0 070 .+ +
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These equations can be solved producing

N—1

TN

Al . . ~ .-
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(A-33)
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where C) are arbitrary constants which cancel out in the final
expression for dispersion D. These equations enable us to find
the expressions for 7}1,
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N—1 N
R +knjﬁ(/1)] / (1 — m (b)
k=1

(A-36)

)

It is now possible to obtain the explicit expressions for the
drift velocity V and dispersion D using the steady-state
definitions eqs 2 and 3. The mean particle position can be written
as

-1

z ;b

(dO) +o0 N—1
() 0= i+ N P, n+
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-1
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Using master equation A-1, the following expressions can
be derived

d B d o d N—1 .
—hmch(t)D zb(t)-l- zb(t)-l-
Tz ( W= (5= (5)
(W)A_;) by =\F A= |5 JAr = JA- (A-39)
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Finally, using eqs 28 and 29, the final expressions for the
velocity (eq 10) are obtained.

A similar approach is used to obtain the formula for
dispersion. We start from

> do

2 ( 0)2 o & k=0 0
@(r) 0=~ j+N— Pl r)+
N [=—00 j=0 dO !
-1 2
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d_
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and again using master Eq. (A-1) we derive



Spatial Fluctuations Affect the Dynamics of Motor Proteins
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By using definition 3 and A-40, it can be shown that

( ) iu—w TO+2]Eu+w)b
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£

N 2| N—1
A ZTO 5]z 2
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4 NI & 24
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By substitutmg the expressions for Tf (using also eqs A-36,
A-33, A-34, and A-35) into A-43, the constants C; cancel out
and we obtain the final expressions for dispersion.
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