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It is known that several classes of signaling molecules stimulate
complex concentration-dependent responses that are critical

for growth, development, and tissue formation in multicellular
organisms.1�4,11 In recent years there have been many quanti-
tative studies that revealed important features and details of
morphogen gradients in different biological systems.5�10 How-
ever, fundamental mechanisms of morphogen gradient forma-
tion are still not well understood.

The current view of the development of morphogen gradients
suggests that this process is a result of a combination of physical
and chemical processes. The simplest and the most popular
proposedmechanism, known as a synthesis�diffusion�degrada-
tion (SDD) model,5 assumes that locally produced signaling
molecules diffuse freely along the tissue while being uniformly
degraded.7,8,11 This model has been used successfully to describe
temporal evolution of signaling molecule profiles in different
biological systems.7,8,10,12However, the application of thismechan-
ism to the formation of bicoid morphogen gradient led to
controversial observations.5,6 Measured mobility of bicoid mol-
ecules was too low to explain fast establishment of the stationary-
state profile by a simple unbiased diffusion. Several ideas how to
resolve this paradox, such as biased diffusion due to active
processes6 and the effect of the advective transport,13 have been
proposed. However, experimentally all these suggestions have
not yet been supported. Furthermore, a recent theoretical study
of the formation of morphogen gradients has provided a sys-
tematic approach to explicitly evaluate time to reach steady-state
concentration profiles.14 The most surprising observation of this
theoretical analysis is a linear scaling as a function of the distance
from the source for the time to establish a morphogen gradient in
the SDDmodel. It led to a conclusion that stationary concentration

profiles could be formed faster than was thought previously, but
the mechanism of such acceleration remains unclear. In the
system with the unbiased diffusion, a quadratic scaling with the
distance and slow reaching of steady-state conditions are ex-
pected. In this work, we propose a microscopic model that allows
one to explain this paradoxical behavior. Our theoretical picture
provides a physical�chemical mechanism for the fast formation of
morphogen gradients and linear scalings in the relaxation times.

To analyze the formation of the morphogen gradient, we utilize
a discrete-state version of the SDD model, as shown in Figure 1.
The signaling molecule can be found in one of the discrete sites n
(ng 0) that might be associated with an underlying line of cells. It
is analogous to a compartmental model developed recently for the
bicoid gradient.15 In addition, a single-molecule view of the process
is adopted here, i.e., the concentration of molecules is equivalent to
the probability of finding a single particle at a given site.We assume
that particles are produced at the origin, n = 0, with a rate Q, then
they spread to the right (ng 0) via a free diffusion along the lattice
of discrete sites with a diffusion rate u (see Figure 1). At any
position, the particle might also be degraded with a rate k. The
continuum description of the system is obtained when the diffu-
sion rate is much faster that the degradation processes, i.e., u. k.
In the discrete case, the probability Pn(t) of finding the particle at
the position n at time t is governed by a set of master equations:

dPnðtÞ
dt

¼ u½Pnþ1ðtÞ þ Pn�1ðtÞ� � ð2uþ kÞPnðtÞ ð1Þ
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ABSTRACT: Concentration profiles of signaling molecules, known as morphogen gradients,
determine polarity and spatial patterning in the development of all multicellular organisms. A
widely used approach to explain the establishment of morphogen concentration gradients
assumes that signaling molecules are produced locally, then spread via a free diffusion along the
line of developing cells and degraded uniformly. However, recent experiments have produced
controversial observations concerning the feasibility of this theoretical description. Some
experimentally measured dispersions for morphogens cannot support fast formation of
stationary concentration profiles. In addition, the latest theoretical analyses of times to establish
the morphogen gradient yield a surprising linear scaling as a function of length from the source
that is not expected for the unbiased diffusion process. We propose here a theoretical approach that provides a possible
physical�chemical mechanism to explain these observations. It is argued that relaxation times to establish morphogen gradients are
mostly determined by first arrival times, and the degradation plays a critical role in this mechanism by effectively accelerating
diffusion of signaling molecules via removal of slow moving particles. This coupling between diffusion and degradation is analogous
to the action of the effective field that drives particles away from the local source.
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for n > 0, and

dP0ðtÞ
dt

¼ Q þ uP1ðtÞ � ðuþ kÞP0ðtÞ ð2Þ

At steady-state regimewe have dPn(t)/dt = 0, and these differential
equations simplify into a system of algebraic equations that can be
analytically solved. It can be shown that at t f ¥ the stationary
profile is an exponentially decaying function of the distance from
the source, and it is given by

PðsÞn ¼ 2Qxn

kþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4uk

p ð3Þ

with x= (2uþ k� (k2þ 4uk)1/2)/(2u). The corresponding decay
length of the concentration profile is equal to λ = �1/ln x. In the
case when diffusion is faster than the degradation, u. k, we obtain
λ = (u/k)1/2, which is a well-known result from the continuum
SDDmodel.14 For fast degradation rates, k. u, the decay length,
as expected, is much smaller, λ = 1/ln(k/u). In this case,
morphogens are removed so fast that they cannot diffuse far away
from the source.

Applying the theoretical analysis of Berezhkovskii and co-
workers14 we can calculate the time to reach the stationary-state
profile at any site by evaluating the Laplace transform of the local
relaxation function Rn(t) = 1 � (Pn(t))/(Pn

(s)). The relaxation
time is given by tn = ~R(s = 0), and it yields for the discrete-state
SDD model

tn ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4uk

p 2uþ kþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4uk

p

kþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4uk

p þ n

" #
ð4Þ

One can see that the linear scaling is found again. For slow
degradation rates, k , u, it can be shown that

tn =
1
2k

1þ nþ 1ffiffiffiffiffiffiffi
u=k

p
" #

ð5Þ

which is exactly the relation obtained in the continuum SDD
model.14 In the regime of slow diffusion, u , k, the relaxation
time depends only on the degradation rate, tn = (n þ 1)/k. In
contrast to naive expectations, for all ranges of parameters,
increasing the degradation rate accelerates reaching the station-
ary-state profile. One might come to the important conclusion
here that fast formation of morphogen gradients and linear
scalings are not artifacts of the continuum approximation of
underlying biochemical processes.

To understand the mechanisms of fast relaxation, we should
recall that initially at t = 0 the particle is at the position n = 0, and
to achieve a steady-state profile at the site n it must first reach this
site. Thus we hypothesize that a total time to establish a
morphogen gradient at the site n is a combination of the mean

first-passage time (MFPT) to arrive to this site, which must
strongly depend on n, and a local rearrangement time, which
most probably is a weak function of the position. To test this idea,
we explicitly calculate MFPTs, τn, for the discrete-state SDD
model, and we compare them with relaxation times tn obtained
via relaxation functions analysis.14 It is important to note that in
our analysis, conditional MFPTs, which describe the time to
reach the site given that the particle survive, are needed. It can be
accomplished by analyzing a function fn(t) defined as a first-
passage probability to reach for the first time the site n at time t if
at t = 0 the particle was at the origin. Temporal evolution of this
function follows a system of backward-master equations:16

dfnðtÞ
dt

¼ u½ fnþ1ðtÞ þ fn�1ðtÞ� � ð2uþ kÞfnðtÞ ð6Þ

for n > 0, and

df0ðtÞ
dt

¼ uf1ðtÞ � ðuþ kÞf0ðtÞ ð7Þ

Again using Laplace transformations,~f n(s) =
R
0
¥fn(t)e

�st dt, it can
be shown that

~f nðsÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4u2

p
yn

ða� 2uþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4u2

p Þy2n � ða� 2u� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4u2

p Þ
ð8Þ

where a = s þ 2u þ k, and y = [a þ (a2 � 4u2)1/2]/2u. The
conditional mean first-passage time to reach the site n can be
found from the following expression:

τn ¼ �
d~f nðsÞ
ds js¼ 0

~f nðsÞjs¼ 0

ð9Þ

The explicit formula for MFPT is rather bulky:

τn ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4uk

p � 2uþ kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4uk

p
�

þð2uþ kþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4uk

p Þzn þ ð2uþ k� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4uk

p Þz�n

ðkþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4uk

p Þzn � ðk� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4uk

p Þz�n

þ ðkþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4uk

p Þnzn þ ðk� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4uk

p Þnz�n

ðkþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4uk

p Þzn � ðk� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4uk

p Þz�n

�
ð10Þ

where z = [2uþ kþ (k2þ 4uk)1/2]/2u. However, it simplifies in
the limiting cases: for large degradation rates, k. u, it gives τn=
(n þ 1)/k, while for the fast diffusion along the cells, u. k, the
resulting MFPT is τn = n/2(ku)1/2, and this is the result that one
obtains from the continuum approach. It is important to note that
linear scaling with the distance is also observed for first arrival times
at all conditions. In addition, in both limiting cases far away from the
origin, n. 1, the expressions forMFPTbecome equal to the relaxa-
tion times as presented above, in agreement with our original idea.

The contributions of MFPT in the overall times to form the
stationary-state profile for different diffusion and degradation
rates are illustrated in Figure 2. One can see that, in the process of
developing the morphogen gradient at the given site, reaching
this site for the first time becomes a rate-limiting step, and this
effect is stronger the further the site is from the origin. It supports

Figure 1. Schematic picture for the discrete-state model of the mor-
phogen gradient formation. Particles are created with the rate Q at the
origin. They can also diffuse along the lattice with the rate u, or they
might be degraded with the rate k.
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our hypothesis on the importance of MFPT in the formation of
the morphogen gradient. First-arrival times provide a better
description of the relaxation times with increasing degradation
rates. As shown in Figure 2,MFPT accounts for more that 90% of
the relaxation time for n > 100 in the case of weak degradation
rates (k/u = 0.01). For larger degradation rates (k/u g 1) the
deviation between relaxation times and MFPT is less than 10%
for much shorter distances from the source (n > 15). Thus the
time to establish the concentration profile of signaling molecules
could be well approximated by the first arrival time. MFPT
accounts for almost all relaxation times when the particle is
further away from the source, as indicated in Figure 2. It also
supports our idea that local rearrangement times depend much
more weakly on the distance n than the MFPT.

Comparison ofMFPT and relaxation times suggest thatmechan-
isms of morphogen gradient establishment could be understood by
analyzing how signaling molecules come first to different regions of
the system. Thus the fast formation of steady-state concentration
profiles can be attributed to quick arrival of molecules to specific
sites. However, it raises a question of how particles move so fast
following the linear scaling with the distance in the system without
external bias where quadratic scaling is expected. To answer this
question, it is important to consider in detail all relevant biochemical
and biophysical processes, namely, diffusion and degradation.

In the SDD model particles are not only freely diffusing, but
they also have a nonzero probability to be removed from the
system by degradation. The residence time of the molecule at
each site is a stochastic quantity, and it is decreased by the
degradation process. Particles that stay longer at each site will not
survive to support the stationary concentration profile. Only
molecules with short residence times at each site will remain in
the system at large times. This effectively leads to increasing the
spreading velocity of molecules, since slower particles will be
degraded. The process can also be viewed in the following way:
particles in the system with the degradation are the subject of the
effective potential Ueff(n) that biases their motion. This can be
seen from the fact that the steady-state concentration profile is
not uniform, but is rather an exponentially decaying function.
This effective potential could be reasonably estimated from the
stationary profile, Ueff(n) = kBT lnPn

(s). Utilizing eq 3 it can be
shown that the effective potential is given by

Uef f ðnÞ ∼ n ln x ð11Þ

i.e., there is a constant force (F∼ ∂Ueff/∂n) pushing each particle
away from the source. However, the motion of particle in such a
strong potential is known as a driven diffusion, which produces
linear scaling in the distance as the function of the time. One
concludes then that particles in the SDDmodel cannot be analyzed
by the unbiased diffusion approach. The correct theoretical picture
of the process is a diffusion in the effective potential created by the
degradation. This explains the fast establishment of the morpho-
gen gradient and linear scaling of relaxation times. A surprising
result of this theoretical analysis is that the degradation accelerates
the formation of the stationary profiles by keeping fast surviving
molecules and removing slow particles. The effect is similar to the
creation of the effective strong potential that drives particles away
from the source.

It is also interesting to discuss the biological implications of the
acceleration of the gradient formation via this mechanism. While
increasing the rate of the signal degradation allows one to establish
the stationary concentration profiles faster, less and less particles
reach a given location in the cell tissue, and this moves the whole
system in the regime with a small number of particles that is
characterized by large fluctuations. Thus it might not be bene-
ficiary for the cellular system to increase the degradation rate too
much because it also increases noise, which might have negative
consequences for the following development processes.

In conclusion, we have proposed a theoretical approach that
allows one to explain the fast formation of morphogen gradients
and linear scalings with the distance in relaxation times to
stationary profiles. Our physical�chemical model argues that
in the system with the source production of signaling molecules
and the uniform degradation of molecules along the total time to
establish the morphogen gradient is a sum of the first-arrival and
the local rearrangement times. The steady-state concentration
profile of signaling molecules cannot form before particles arrive
to the specific sites. It is shown then that the first-passage times
control the formation of the morphogen gradient when mol-
ecules are far away from the source. The fast molecular motion in
such systems is supported by the degradation of particles that
remove slow-moving molecules. The degradation effectively
creates the effective potential that biases diffusing particles away
from the source, and it leads to linear scaling. It is reasonable to
suggest that nature could control complex biochemical and
biophysical processes of the development by modifying degrada-
tion rates and mechanisms. Our theoretical approach could be
easily extended tomore complex andmore realistic models of the
morphogen development that include nonlocalized production
of signaling molecules, localized degradation region, finite length
of the patterned interval, and cooperative mechanisms of degra-
dation. However, it is expected that the presented physical�
chemical mechanism will still be valuable for understanding
complex biochemical and biophysical processes during the
formation of morphogen gradients. It will be important to test
the proposed theoretical ideas in experimental studies.
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