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Recently, Block and coworkers [Visscher, K., Schnitzer, M. J., &
Block, S. M. (1999) Nature (London) 400, 184–189 and Schnitzer, M. J.,
Visscher, K. & Block, S. M. (2000) Nat. Cell Biol. 2, 718–723] have
reported extensive observations of individual kinesin molecules
moving along microtubules in vitro under controlled loads, F 5 1 to
8 pN, with [ATP] 5 1 mM to 2 mM. Their measurements of velocity,
V, randomness, r, stalling force, and mean run length, L, reveal a
need for improved theoretical understanding. We show, present-
ing explicit formulae that provide a quantitative basis for compar-
ing distinct molecular motors, that their data are satisfactorily
described by simple, discrete-state, sequential stochastic models.
The simplest (N 5 2)-state model with fixed load-distribution
factors and kinetic rate constants concordant with stopped-flow
experiments, accounts for the global (V, F, L, [ATP]) interdepen-
dence and, further, matches relative acceleration observed under
assisting loads. The randomness, r(F,[ATP]), is accounted for by a
waiting-time distribution, c1

1(t), [for the transition(s) following
ATP binding] with a width parameter n [ ^̂t&&2y^̂(Dt)2&&.2.5, indica-
tive of a dispersive stroke of mechanicity .0.6 or of a few (*n 2

1) further, kinetically coupled states: indeed, N 5 4 (but not N 5 3)
models do well. The analysis reveals: (i) a substep of d0 5 1.8–2.1
nm on ATP binding (consistent with structurally based sugges-
tions); (ii) comparable load dependence for ATP binding and
unbinding; (iii) a strong load dependence for reverse hydrolysis
and subsequent reverse rates; and (iv) a large (*50-fold) increase
in detachment rate, with a marked load dependence, following
ATP binding.

K inesins are motor proteins that play an important role in
cellular transport (1). They use the energy of hydrolysis of

ATP molecules for moving vesicles and organelles along micro-
tubules (MTs). Understanding the mechanism of motor protein
motion is a serious challenge of modern biology.

Experimental investigation of motor proteins includes the
determination of biochemical cycles (1), the measurement of
rate constants by standard chemical kinetic methods (2), and the
elucidation of molecular structure by x-ray crystallography, etc.
(1, 3, 4). Also important are measurements of mechanical
properties by laser-based optical trap spectrometry or by the use
of microneedles (5–10).

Theoretical modeling of the motion of motor proteins has
involved mainly two approaches. The first is based on thermal
ratchet models in which a motor is viewed as a Brownian particle
moving in two (or more) periodic but spatially asymmetric
stochastically switched potentials (11). A different approach uses
a multistate chemical kinetic description and postulates that the
motor protein molecule steps through a sequence of discrete
chemical states, possibly with branches, etc., linked by rate
constants (12–16).

Recently, precise and extensive observations of the mechan-
ical behavior of individual kinesin molecules moving in vitro
under controlled external loads have been reported by Visscher,
Schnitzer, and Block (9). In their unique experiments the tail or
tether of a (squid axon) kinesin molecule was bound chemically
to a silica bead while the head moved along an immobilized MT.
An optical force clamp, using a feedback-driven optical trap,

monitored the displacement, x(t), of a single kinesin molecule
while keeping the load on the motor close to a fixed value, F. The
principal findings of Block and colleagues were: (i) the stalling
force, FS, which brings the mean velocity V to zero, depends on
the concentration of ATP; (ii) under increasing external loads
the maximum velocity of the motor protein decreases while the
effective Michaelis–Menten constant increases; (iii) the force-
velocity plots exhibit different shapes depending on [ATP]; and
(iv) the randomness parameter, r, which is a dimensionless
measure of the dispersion of the motion along the track (5, 13,
14), as a function of external load at saturating [ATP] is almost
constant at low and intermediate loads but increases rapidly near
the stalling force. Block and coworkers concluded that their
experimental data necessitated revisions to the theoretical un-
derstanding of kinesin motor function. Subsequently, they pub-
lished (10) processivity data over similar force and [ATP] ranges,
specifically, mean run-lengths, L (along the MT, before individ-
ual kinesin motors irreversibly detach). They also proposed
various theoreticalymathematical descriptions of varying de-
grees of elaboration. However, their analysis did not address the
previous observations of randomness or describe stall forces.

Our aim here is to show that these striking observations (9, 10)
can be described well qualitatively and with reasonable quanti-
tative precision by using simple sequential stochastic models,
which have been extended recently and analyzed critically (12–16).
We fit all of the experimental data of Block and colleagues and
show that our analysis is consistent with other experiments (7) in
which kinesin molecules move on MTs under negative (F , 0) or
assisting external loads (for which the analysis of ref. 10 fails).

Summary of Theoretical Approach
Following refs. 12–16, we suppose that a motor protein molecule
steps a distance d (equal to 8.2 nm for kinesins on MTs) between
consecutive binding sites located at positions x 5 ld (l 5 0, 61,
62, . . .) on a linear track (the MT) by passing through a
sequence of N intermediate biochemical states, j 5 0, 1, . . . ,
N 2 1. The motor in state jl (at site l) can jump forward to state
(j 1 1)l at a rate uj and can move backward to state (j 2 1)l at
a rate wj as described by the stochastic reaction scheme

~0!l L|;
u0

w1

~1!l L|;
u1 @c1

1 ~t!#

w2

~2!l . . .L|;
uN22

wN21

~N 2 1!l L|;
uN21

w0

~0!l11,

u 4 d0 3 u 4 d1 3 u 4 . . . 3 u4 dN21 3 u
[1]

where the significance of the waiting-time distribution function,
c1

1(t), which extends the scheme, is explained below. The dj
represent substep lengths for the center of force of the motor as
projected onto the mean direction of motion along the track:
they are defined more explicitly below. As expected, the total
step length is d 5 ¥j 5 0

N21 dj.

This paper was submitted directly (Track II) to the PNAS office.

Abbreviation: MT, microtubule.
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Note that we always suppose that the state (0)l represents the
motor clamped on the track in the absence of a necessary fuel
molecule. For kinesins, which consume one ATP molecule per
step, the known chemical details of the hydrolysis of ATP in the
presence of MTs (see, e.g., ref. 2) suggest that the discrete motor
states in an N 5 4 reaction scheme can be explicitly identified as

~0!l 5 ~MzK!l, ~1!l 5 ~MzKzATP!l,

~2!l 5 ~MzKzADPzPi!l, ~3!l 5 ~MzKzADP!l, [2]

where (M z K)l stands for an MT-kinesin complex at site l while
Pi and ADP are the successive products of the hydrolysis.

As our previous analysis demonstrated (13, 14), the effect of
an external load F opposing forward motion should be taken into
account by modifying the transition rates according to

uj f uj~F! 5 uj
0e2uj

1 FdykBT , wjf wj~F! 5 wj
0e1uj

2 FdykBT ,
[3]

where uj
1 and uj

2 are load distribution factors that reflect how the
external force affects the individual rates. [See also, in the
context of ion channels, chapter 14 of Hille (16). Note that we
may assume ¥j 5 0

N21 (uj
1 1 uj

2) 5 1 (13, 14).]
These factors embody important and, indeed, inescapable

mechanistic details of the motor protein action. Together they
constitute a load-distribution pattern, as illustrated for kinesin in
Fig. 1 (in terms of the fits described below). In a simple peaks and
valleys picture of the (effective) free energy along a reaction
coordinate (projected on to the MT axis) the valleys represent
the intermediate chemical states at spacings

dj 5 ~uj
1 1 uj 1 1

2 !d, [4]

while the peaks are located in between at relative distances
uj

1y(uj
1 1 uj11

2 ) (17).
One may read off from Fig. 1 that all backwards rates (long

downward slopes) are strongly load-dependent whereas only the
first forward rate, u0 (for ATP binding), is significantly load-
dependent. Likewise, the ATP-binding substep, d0, lies between
1.8 and 2.1 nm (with the higher range near 2.0 nm preferred

because the N 5 4 fits are better: see the figures and discussion
below). This value appears to correlate with recent conforma-
tional suggestions based on structural studies of kinesin on MTs
(3, 4). It may be anticipated that corresponding load-distribution
patterns for other members of the kinesin family, for ncd, etc. (4),
will reveal instructive similarities and differences.

Given a set of N rate constants, the previous mathematical
analysis (13, 14) provides exact, relatively simple closed-form
expressions for the mean velocity, V, for the dispersion, D
[proportional to ^[Dx(t)]2&, where Dx 5 x(t) 2 ^x(t)&], and thence
for the randomness, r 5 2DydV (5, 13, 14). Indeed, for an N 5
2 model one simply has

V 5 d~u0u1 2 w0w1!ys, [5]

where s 5 u0 1 u1 1w0 1w1. The expression for general N leads
to the stall force relation (13, 14)

FS 5 ~kBTyd! ln P
j 5 0

N 2 1

~uj
0ywj

0!, [6]

defined by V(F 3 FS) 3 0.
If irreversible detachment (or ‘‘death’’) rates dj, from states j,

are included in Eq. 1, the corresponding N 5 2 expressions for
V and D are given in equations 31–35 of ref. 15. The merit of such
easily programmable expressions is that the full parameter space
of the model can be readily explored when searching for fits to
extensive data such as provided by Block and coworkers (9).

More generally, one may extend the standard chemical kinetic
models (with a simple Poissonian or exponential waiting time in
each state j) by introducing arbitrary, waiting-time distribution
functions, cj

6(t), which specify the probability densities for the
corresponding forward or reverse transitions at a time t after the
system arrives in state j. Such a description is potentially more
economical in describing motor dynamics (as will be seen); it
escapes a stringent lower bound on the randomness, namely, r $
1yN (13, 14); and it may, for example, be used to summarize
diffusive motion on a ratchet potential (11) in lieu of integrating
the Fokker–Planck equations.

The analysis presented in ref. 16 shows that when effective
transition rates, uj and wj, are defined appropriately in terms of
the cj

6(t), the expressions for the velocity, V, do not change.
However, the dispersions change dramatically. To be concrete,
for the N 5 2 model described in Eq. 1 with only a single
nonexponential waiting-time distribution, for example of the
form,

c1
1 ~t! } tn 2 1e2ntyt1 , [7]

where t1 5 1y(u1 1 w1) is a mean dwell time, the dispersion, D,
is the sum of the terms (16)

D0 5
1
2

d2@~u0u1 1 w0w1! 2 2~Vyd!2#ys, [8]

D1 5 21
2

~Vt1!
2u1M~u0 1 w0!ys. [9]

Here the parameter M represents the mechanicity, which is
usefully introduced to quantify generally the deviation from an
exponential waiting-time distribution function (see ref. 16). Thus
the degree of mechanicity ranges from 0 for a chemical kinetic
process (with n 5 1 in Eq. 7) to 1 for a purely mechanical,
‘‘clockwork’’ transition (n3 `) (16). Indeed, when Eq. 7 holds,
one has M 5 1 2 n21, and n 5 ^t&2y^(Dt)2& measures the waiting
time sharpness; by the convolution theorem this process (ne-
glecting reverse transitions) also can be mimicked by a sequence
of $n simple Poisson processes.

Fig. 1. Load distribution patterns for kinesin (a) for our (N 5 2)-state model
and (b and c) for two (N 5 4)-state models. The projected lengths, Dxi, of
successive segments are u0

1d, u1
2d, u1

1d, . . . ; the slopes are of arbitrary, fixed
magnitude but positiveynegative for forwardyreverse transitions. Thus the
minima locate intermediate chemical states (0), (1), . . . , (N) [ (0) separated by
substeps d0 5 (u0

11 u1
2)d . 2.0 nm, d1 5 . . . .
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Analysis of Kinesin Data
To analyze the data of Block and coworkers (9) note, first, that
the forward transition from (0)l, which represents ATP binding,
should have a rate u0 5 k0[ATP], whereas the subsequent reverse
and forward rates, w1 and u1, should not depend on [ATP].
Stopped-flow chemical experiments (using Drosophila kinesins)
(2) indicate

k0
0 . 2.0 6 0.8 mM21s21 , w1

0 . 70 6 9 s21 , u1
0 . 50 6 6 s21 ,

[10]

(where the superscripts denote zero load, F [ 0).
The final reverse reaction rate, w0 (see Eq. 1), is undetectably

small chemically (2) but, in principle, might be expected to vary
as k0

2[ADP][Pi]. However, we cannot use this because current
experiments employ an ATP regeneration system (5, 9) in which
[ADP] and [Pi] are not separately monitored.§ Accordingly, we
adopt the phenomenological form

w0
0 5 k90@ATP#y~1 1 @ATP#yc0!

1y2 , [11]

where, in effect, the concentration c0 describes the ATP regen-
eration process. The proportionality to [ATP] at low concen-
trations is plausible; but no special significance attaches to the
exponent 1y2, which comes into play near saturation [ATP] and
serves, via Eq. 6, to represent the observed increase of the stall
force, FS, with [ATP] (see Fig. 2). Beyond this, the specific form
(Eq. 11) plays only a small role in fitting the data of Block and
coworkers (9) and Coppin et al. (7).

Two-State Models
Consider, initially, the simplest N 5 2 kinetic model. By system-
atic exploration using Eq. 10 for initial guesses and matching
limiting behavior under large and small ATP concentrations and
loads, we find that V(F,[ATP]) and FS([ATP]) can be fairly well
described by

k0
0 5 1.80 mM21s21 , w1

0 5 6.0 s21 , u1
0 5 108 s21 ,

k90 5 2.8 3 1024 mM21s21 , c0 5 16 mM, [12]

and (see the load distribution pattern in Fig. 1a)

u0
1 5 0.135, u1

2 5 0.080, u1
1 5 0.035, u0

2 5 0.750. [13]

The (somewhat correlated) fitting uncertainties here amount to
1–4 digits in the last decimal places quoted.

The quality of these N 5 2 fits for V can be judged from Figs.
3 and 4 (solid lines). In fact, the Michaelis–Menten forms seen
in Fig. 3 do not represent a particularly sensitive test; but Vmax
decreases with load while the effective Michaelis–Menten con-
stant, KM, increases, as observed by Block and coworkers (9). On
the other hand, the changes of shape with [ATP] of the velocity-
load plots in Fig. 4 are striking and well represented. (The plots
for [ATP] 5 1 mM and 50 mM represent predictions.)

The fitted values of w1
0 and u1

0 in Eq. 12 differ noticeably from
those recorded in Eq. 10. Although the different kinesin types
involved may play a role, we believe that the larger overall
turnover rates typically observed in optical trap experiments
probably arise because single, active motor proteins are exam-
ined whereas in chemical measurements the properties of many
molecules with different levels of activity are averaged together.

Randomness Data
Despite our success in describing the data of Block and col-
leagues (9) relating V, F, and [ATP], no set of (N 5 2)-state rate
parameters and load distribution factors can fit the randomness
observations (see Fig. 5). This is because the randomness falls
below the N 5 2 bound, r 5 1⁄2 (5, 13, 14), for a wide range of
loads (up to .4.5 pN) and ATP concentrations (exceeding .100
mM). The simplest, and most economical route to circumvent
this difficulty is to introduce into the (N 5 2)-state model a
single, nonexponential waiting-time distribution, c1

1(t) (see Eqs.
1 and 7–9 and the previous discussion). On doing this, we find
that a mechanicity M1 . 0.6—or, equivalently, an exponent
n . 2.5 in Eq. 7—provides reasonable fits for [ATP] * 300 mM (see
Fig. 5).

At low ATP concentration, however, our present treatment
seems to underestimate r. This could mean that parallel bio-
chemical pathways (e.g., detachment followed by diffusive re-
attachment) andyor the existence of branches off the main

§We remark that backward steps of kinesin on MTs are seen near stall conditions (7, 8).
These may be envisaged as resulting from ADP and Pi associated with kinesins and the MT
in a successor complex for which the overall solution concentrations, [ADP] and [Pi], may
have relatively little direct relevance.

Fig. 2. Observations of stall force, FS, at specified ATP concentration by Block
and colleagues (9), Œ (joined by dotted lines) using a position clamp and F

using a fixed trap; and derived from Coppin et al. (7),E. The solid, dashed, and
dot-dashed curves are theoretical fits (see text).

Fig. 3. Kinesin velocity as a function of [ATP] under external loads, F, fixed
by a force clamp. The plots, from the top down, are for F 5 0, 1.05, 3.59, 4.60,
and 5.63 pN, respectively. Data from Block and colleagues (9): solid curves, N 5
2 fits; dashed curves, N 5 2 predictions (see text).
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processive path play a role. But, at the cost of introducing further
rate constants, etc., these possibilities are also susceptible to
closed-form analysis (see ref. 15).

An alternative approach to the randomness data is to use only
a pure kinetic description. In this case the simplest acceptable
model must have N 5 4, because Block and coworkers (9)
observed r . 0.39 at saturating [ATP], which implies that at least
three other [ATP]-independent transitions are needed to de-
scribe the motor. Indeed, we find that all of the experimental
observations of Block and coworkers can be fitted with the N 5
4 parameters:

k0
0 5 1.8 mM21zs21 , w1

0 5 40 s21 , u1
0 5 580 s21 ,

w2
0 5 1.6 s21 , u2

0 5 290 s21 , w3
0 5 40 s21 ,

u3
0 5 290 s21 , k90 5 0.225 mM21zs21 , c0 5 16 mM, [14]

and, see the loading pattern in Fig. 1b,

u0
1 5 0.120, u1

2 5 0.130, u1
1 5 0.020, u2

2 5 0.130,

u2
1 5 0.020, u3

2 5 0.130, u3
1 5 0.020, u0

2 5 0.430. [15]

Note the (u0
1 1 u1

2) implies an ATP-binding substep d0 . 2.05

nm in encouraging agreement with 1.76 nm from Eq. 13.
Furthermore, the quality of these fits, as may be assessed from
the dashed lines in Figs. 2, 4, and 5, appears somewhat better
than those for N 5 2. (Essentially no differences appear in
Fig. 3.)

However, the fitted values of u2
1 to u0

2 are now significantly
underdetermined by the available data. In particular, if one
interchanges the values of u0

2 and u2
2, the fits are sensibly

unchanged. Nevertheless, as evident from Fig. 1c, the overall
aspect of the load distribution pattern remains quite similar,
suggesting that it is a robust feature of the kinesin motor.

Assisting Loads
A further check on the N 5 2 models is provided by observations
of Coppin et al. (7) of kinesin moving under assisting or negative
loads (F , 0), which they felt could not be explained by existing

Fig. 4. Fits to the data of Block and colleagues (9) (and predictions) for
velocity as a function of load for fixed concentrations of ATP. Note the
inflection points at low [ATP] and convex profile at saturating [ATP].

Fig. 5. Randomness data from Block and colleagues (9) and theoretical fits
(A) as a function of external load, F, at fixed [ATP] (note that the two data
points at F.5.7 pN and [ATP] 5 2 mM appear separately in Block and cowork-
ers: see figure 4 a and b of ref. 9, respectively) and (B) as a function of [ATP]
at fixed loads of, from top down, F 5 5.69 pN (E), 5.35 and 4.60 pN (dashed-line
predictions), 3.59 pN (F), and 1.05 pN (Œ).
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models. Specifically, their data yield the acceleration ratios
V(F525 pN)yV(F50) 5 2.9 6 0.3, 2.15 6 0.15, and 1.48 6 0.06
for [ATP] 5 5 mM, 40 mM, and 1 mM, respectively. If one merely
adopts the values in Eqs. 12 and 13 and uses Eqs. 3 and 5, these
ratios are well reproduced. However, better fits to the actual
(fairly noisy) V vs. F data (7) are obtained by replacing the rates
w1 and u1 in Eq. 12 by 9.0 s21 and 22 s21, respectively [these lower
rates seem to result from the sampling and averaging methods
used (7) relative to Block and coworkers (9)] (see Figs. 2
and 6A). The corresponding acceleration ratios are then
3.13, 1.80 and 1.44, respectively, in good agreement with the
observations.

Furthermore, Fig. 6B provides predictions for the variation of
the randomness under assisting (and resisting) loads at fixed
[ATP], based on the same N 5 2 model with a processive step
of mechanicity M1 5 0.6 (as above). Corresponding measure-
ments would provide an interesting check on the theory (al-
though for F # 25 pN evidence of a new process affecting the
velocity is seen (7) and, as remarked above, other pathways may
play a role at low [ATP]).

Processivity
The mean run lengths, L(F,[ATP]), exhibited by single kinesin
molecules proceeding along an MT up to detachment, recently
have been reported by Block and coworkers (10) on the basis of
direct observations of runs up to x 5 300 nm supplemented by
estimates of the contributions from longer runs. The data points
in Fig. 7 represent the conclusions (10). To analyze these results,
we follow ref. 15, and, as mentioned above, introduce detach-
ment or dissociation rates, dj(F). For the force dependence we
adopt dj(F) 5 dj

0 exp(uj
dFdykBT). Precise expressions for L when

all runs are fully observed require further computation. How-
ever, recognizing the high processivity of kinesins we may, in
leading approximation, neglect changes in the velocity, V, re-
sulting from dj Þ 0 [which has been checked by using the explicit
results for V(d0, d1) in ref. 15] and examine the results of Block
and coworkers (10) within the previous N 5 2 model (Eqs.
11–13) by using the mean run length estimate

L <
V

P0d0 1 P1d1
, P1 5

u0 1 w0

u0 1 w0 1 u1 1 w1
. [16]

Fig. 6. (A) Force-velocity plots for assisting and resisting loads (F " 0)
according to the N 5 2 model adapted to the data of Coppin et al. (7). (B) The
corresponding predicted load dependence of the randomness.

Fig. 7. Results for mean run lengths, L, obtained by Block and colleagues (10)
(A) as a function of [ATP] for fixed loads F 5 1.1 pN (F), 3.6 pN (E), and 5.6 pN
(}), and (B) as a function of load for [ATP] 5 2 mM (F) and 5 mM (Œ). The solid
lines are corresponding fits (see text).
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Here P1 5 1 2 P0 is the (steady-state) probability that the motor
is in a state processing ATP (i.e., j 5 1).

Reasonable fits to the run length results are then provided by
the detachment parameters.

d0
0 . 0.025 s21 , u0

d . 0, d1
0 . 1.3 s21 , u1

dd . 0.7 nm. [17]

See Fig. 7, but note that the relatively poor fits for high loads (*5
pN) and low [ATP] (&100 mM) may result from undercounting
of nonprocessing motors that are close to stall and move little.
In words, our fits indicate: (i) no detectable load dependence of
the low detachment rate in the bound (ATP-free) state, j 5 0;
but (ii) a roughly 50-fold rate increase when the motor is stepping
(j 5 1) even under zero load, and (iii) a further marked rate
increase under load.

Summary
We have applied previously developed explicit theoretical ex-
pressions for the velocity, V, and dispersion, D, predicted for
molecular motors by various discrete-state, sequential stochastic
models (13–16) to analyze extensive experimental observations
by Block and coworkers (9, 10) of the mechanical properties of
single kinesin molecules moving in vitro on MTs. The data
relating velocity, V, load, F, and ATP concentration, are well
described by the simplest (N 5 2)-state model with appropriate
rate constants (allowing for ATP regeneration) and load distri-
bution factors, uj

6 (see Figs. 2–4).
The load distribution pattern specified by the uj

6 may be
conveniently summarized graphically (see Fig. 1). Its overall
form seems fairly robust because (N 5 4)-state fits provide a
similar pattern. In particular, a mechanical substep of magnitude

d0 . 2.0 nm is associated with ATP binding, and this transition
and its reverse are about equally sensitive to the imposed load,
F. Nevertheless, about 70% of the overall load dependence is
carried by the reverse hydrolysis steps.

On the other hand, to describe the data for the randomness, r 5
2DydV, (d 5 8.2 nm being the motor step length per consumed ATP
molecule) it proves necessary, within an N 5 2 model, to introduce
a waiting time distribution, c1

1(t) (16), into the stochastic scheme
(see Eq. 1). A mechanicity [characterizing the sharpness of c1

1(t)]
M1 . 0.6 for the ATP hydrolysis reactions after ATP binding then
provides an effective and economical fit (see Fig. 5). Alternatively,
purely kinetic (N 5 4)-state models suffice (see Figs. 2–5), although
the load distributions for the hydrolysis steps are not uniquely
determined by the data (see Fig. 1).

The (N 5 2)-state models also describe kinesin dynamics
under assisting loads (7) (see Fig. 6) and, with the introduction
of detachment rates, etc., account for mean run-length studies
(10) (see Fig. 7). The latter reveal a large increase in detachment
rate while the motor turns over ATP.

In conclusion, relatively simple mechanochemical models
account well for the dynamical observations of kinesins. Al-
though the theory provides some structural pointers, establish-
ing more elaborate and microscopic pictures requires further
experimentation.
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6. Meyhöfer, E. & Howard, J. (1995) Proc. Natl. Acad. Sci. USA 92, 574–578.
7. Coppin, C. M., Pierce, D. W., Hsu, L. & Vale, R. D. (1997) Proc. Natl. Acad.

Sci. USA 94, 8539–8544.

8. Kojima, H., Muto, E., Higuchi, H. & Yanagida, T. (1997) Biophys. J. 73,
2012–2022.

9. Visscher, K., Schnitzer, M. J. & Block, S. M. (1999) Nature (London) 400, 184–189.
10. Schnitzer, M. J., Visscher, K. & Block, S. M. (2000) Nat. Cell Biol. 2, 718–723.
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