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Cytoplasmic dyneins play a major role in retrograde cellular trans-
port by moving vesicles and organelles along microtubule fila-
ments. Dyneins are multidomain motor proteins with two heads
that coordinate their motion via their interhead tension. Compared
with the leading head, the trailing head has a higher detachment
rate from microtubules, facilitating the movement. However, the
molecular mechanism of such coordination is unknown. To eluci-
date this mechanism, we performed molecular dynamics simula-
tions on a cytoplasmic dynein with a structure-based coarse-grained
model that probes the effect of the interhead tension on the
structure. The tension creates a torque that influences the head
rotating about its stalk. The conformation of the stalk switches
from the α registry to the β registry during the rotation, weakening
the binding affinity to microtubules. The directions of the tension
and the torque of the leading head are opposite to those of the
trailing head, breaking the structural symmetry between the heads.
The leading head transitions less often to the β registry than the
trailing head. The former thus has a greater binding affinity to the
microtubule than the latter. We measured the moment arm of
the torque from a dynein structure in the simulations to develop a
phenomenological model that captures the influence of the head
rotating about its stalk on the differential detachment rates of the
two heads. Our study provides a consistent molecular picture for
interhead coordination via interhead tension.
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The successful functioning of living systems strongly depends
on the activities of several classes of enzymatic molecules,

which are known as motor proteins or biological molecular
motors (1–3). One of the most important motor proteins is cy-
toplasmic dynein, which is responsible for retrograde transport
along microtubules (MTs) (4, 5). A dynein molecule can walk
with a cellular cargo for hundreds of steps, that is, highly proc-
essively, before detaching from an MT (6, 7).
Cytoplasmic dynein is a large protein complex composed of

two identical heavy chains and several other subunits. Each
heavy chain includes a nonmotor tail domain and a motor head
domain composed of a ring of six AAA+ domains, a stalk, and an
MT-binding domain (MTBD) (8). One head is referred to as the
“leading head” and the other is the “trailing head.” Although the
structural topology of dynein is similar to that of several other
widely investigated motor proteins, such as kinesins and myosins
V and VI (9, 10), the mechanism underlying their movement is
different. Previous studies have shown that both kinesin and
myosin molecules walk in a so-called hand-over-hand fashion
(11, 12), indicating that for each step the leading head binds to
the cytoskeletal filament while the trailing head detaches from
the filament and swings from the back to the front. This rule does
not depend on interhead separation. Surprisingly, the co-
ordination between the two heads of a cytoplasmic dynein de-
pends on the separation and the tension between the heads—the

greater the separation, the higher the interhead tension. When
the separation is small, the leading and trailing heads of cyto-
plasmic dynein have a similar probability of detaching from the
MT and of stepping forward without apparent coordination (13,
14). When the leading head steps forward, the separation natu-
rally increases. There is a backward tension on the leading head
and a forward tension on the trailing head (Fig. 1B). The
interhead tension differentially impacts the detachment rates of
the two heads from the MTs. Both theoretical investigations (15)
and single-molecule experiments (16, 17) have shown that the
interhead tension accelerates the detachment rate of the trailing
head from the MT but does not change the detachment rate of
the leading head. Thus, the trailing head detaches and steps
forward while the leading head remains on the MT. The tension
has been speculated to alter the angle between the stalk of the
cytoplasmic dynein and the MT (8). In addition, a previous study
suggested that tension changes the bending direction of the stalk,
thus affecting the detachment rate (18). These studies focused
mainly on the flexible stalk of dynein (19, 20) that rotates about
the principal axis of the MT or the axis perpendicular to the MT
(x and y axes, respectively, in Fig. 1A). The role of the ring in
transmitting the tension and breaking the symmetry of motion
between the two heads remains unclear.
A major challenge of interrogating the effect of the interhead

tension on the differential detachment rates of cytoplasmic dy-
nein is the lack of a high-resolution structure of double-headed
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dynein. Even if a structure was available, the computational cost
of an all-atom molecular dynamics simulation is prohibitively
expensive. We therefore developed a strategy to overcome these
challenges by using only one head as a modeling framework and
by using coarse-grained molecular simulations. Because the two
heads are structurally identical, we simply applied a force to one
head in either direction pointing toward the plus or the minus
end of the MT as a modeling framework for interrogating the
effect of interhead tension on a double-headed dynein. We ap-
plied an external force on the N terminus positioned close to the
hexameric ring (Fig. 1C). The head pulled by the force toward
the minus end represents the trailing head, and the one pulled
toward the plus end represents the leading head.
We built a molecular structure of a single head of dynein in-

cluding a ring of six AAA+ domains, a stalk, and the MTBD that
dock on an MT (Fig. 1C) from several crystal structures of frag-
mented dyneins (21–24). We employed a structure-based model
(SBM) to probe the conformational transition of a dynein head
driven by a force. Although the SBM neglects the energetic
roughness that is typically present in all-atom simulations (25), the
SBM has been useful in capturing key features of motions from
motor proteins (26–29). Indeed, our SBM simulations reveal that
when a force pulls the N terminus of the hexameric ring, the
pulling creates a torque that influences the rotation of the ring
about the stalk in the z axis in Fig. 1A. The moment arm, which is
measured from the line of the force to the rotational axis in the
simulations, is useful in developing a phenomenological model for
analytical calculations that quantitatively captures the differential
detachment rates of the two heads. Our combined effort of
computer modeling, simulations, and analytical calculations pro-
vides a molecular basis to explain the regulation mechanism of the
interhead tension in cytoplasmic dynein.

Results
Kinetic Pathways of the Conformational Change in Cytoplasmic
Dynein. In our study, the cytoplasmic dynein molecule was ap-
proximated as a ring of six AAA+ domains on the top (Fig. 1C,

blue), a coiled-coil stalk in the middle (Fig. 1C, pink), and an
MTBD at the bottom (Fig. 1C, green). For the stalk, two con-
formations, named the α and β registry, were observed in pre-
vious experiments (30). In the following, if the stalk is in the α
registry, we will denote that the dynein in the α state; otherwise,
it is in the β state. Our hypothesis is that the transition between
the α and the β states might be crucial for the coordination be-
tween the two heads of cytoplasmic dynein. Therefore, to test
this idea, we built a dual-basin SBM (details are given in SI
Appendix) to monitor the transition from the α to the β state
kinetically. An ensemble of 250 unbiased trajectories is pre-
sented in Fig. 2A, and a typical trajectory is shown in Fig. 2B. We
employ a reaction coordinate, Q, which measures the fraction of
the native contact formations of the corresponding crystal
structures (see detailed definitions in Fig. 2).
The dominant kinetic path was identified as follows. The

system begins with the α state, which has a low Qstalk (0.2, Fig.
2B, pink) and low QMTBD (0.5, Fig. 2B, green). Then, Qstalk
grows from 0.2 to 0.7, indicating a gradual transition from the α
to the β state. However, in this intermediated state, QMTBD still
remains low (0.5). After the Qstalk increase continues from 0.7 to
0.8, QMTBD increases from 0.5 to 0.9. The system now turns into
the β state. Our simulation suggests a sequential conformational
change propagating from the stalk to the MTBD.

Stalk Conformation Influences Cytoplasmic Dynein Binding to MT.
Our computer simulation indicated that the conformation of
the stalk influences the strength of the dynein binding to the MT.
Since the crystal structures are not available, we have utilized a
pseudoatomic model based on the cryo-EM map (21) to com-
pute QDynein-MT. It is a strong-binding state corresponding to the
α state. We have chosen Qα

Dynein−MT as a reaction coordinate since
it is directly connected to our structure-based Hamiltonian. In
the α state, the MTBD of dynein tightly binds to the MT, in-
dicated by a high fraction of the native contact formation in the

Fig. 1. Illustration of the studying system. (A) Double-headed cytoplasmic
dynein docking on an MT. The blue arrow shows the walking direction of the
dynein. (B) After the leading head steps forward, the distance between the
leading and trailing heads increases, resulting in the interhead tension Finter.
The red box shows a single head, which is the region simulated in this study.
(C) Structure of the single head, which includes an AAA ring (blue), a coiled-
coil stalk (pink), and an MTBD (green). The head docks on a short MT (purple).
An external force of 2 pN is applied to the N terminus of the single head
(residue 1255Q in the crystal structure with Protein Data Bank ID code 4rh7) to
mimic the interhead tension within a double-headed cytoplasmic dynein.

Fig. 2. Kinetic simulations of a cytoplasmic dynein changing from the α
state to the β state. (A) Kinetic probability distribution produced from 250
unbiased kinetic trajectories from the α to the β state. The unit of the
probability distribution is kBT. Q

n
m measures the fraction of the native con-

tact formations for a particular segment m (m = stalk, MTBD, or dynein–MT)
in the n (n = α or β) state. The red arrow shows the dominant kinetic path. (B)
A typical kinetic trajectory from the α to the β state. The pink line represents
Q for the stalk. The green line represents Q for the MTBD. The purple line
represents the fraction of the native contact formations between the MTBD
and the MT when the dynein is in the α state. (C) Representative snapshot of
the α state. The MTBD tightly binds to the MT. (D) Representative snapshot
of the β state. The MTBD partially detaches from the MT. The cleft between
the MTBD and the MT is marked with a blue arrow. The time unit is τL, used
in our coarse-grained simulations.
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dynein–MT interface, QDynein-MT (purple line in Fig. 2B and Fig.
2C). When the MTBD changes from the α state to the β state,
the dynein–MT interfacial contacts in the α state cannot be si-
multaneously formed anymore. Subsequently, in the β state
Qα

Dynein−MT reduces by half (Fig. 2B, purple), as evident from a
cleft between the dynein and the MT (Fig. 2D). This cleft in the β
state is the consequence of conformational change of the dynein
molecule itself. The loss of these contacts reduces MT binding
affinity. We suggest that a reduction in the fraction of the native
contact formation leads to a decrease in the binding affinity,
consistent with previous experimental observations (22, 30)
finding that the β state corresponds to a weaker binding state
compared with the α state.
Inspired by this result, we hypothesize that for the trailing

head the interhead tension will favor the transition from the α
state to the β state, while for the leading head the tension will
inhibit the transition. Because the β state corresponds to a
weaker binding state to the MT than the α state, the trailing head
will on average detach from the MT before the leading head. We
will show the details of our calculations below.

Dynein Rotates About Its Stalk During the Transition from the α to
the β State. Our computer simulations indicate that dynein’s head
rotates about its stalk during the transition from the α to the β state.
Fig. 3 demonstrates the rotation, using the AAA ring as an example
(the stalk also rotates). The rotation is quantified by the angle
between the normal vector of the AAA ring and the main axis of
the MT. The free energy basin on the left in Fig. 3 represents the α
state, which has a low Qstalk (0.2) as detailed above. The angle in
this basin is ∼150°, indicating that the normal vector of the AAA
ring and the main axis of MT are almost antiparallel. In contrast,
when dynein switches to the β state (Fig. 3, the basin on the right),
this angle decreases to 75°, indicating that the normal vector of the
AAA ring and the main axis of MT are almost perpendicular. Thus,
the conformational change between the α and the β state is asso-
ciated with a rotation of the dynein molecule by 75°.

Dynein Controls Its Two Heads by the Interhead Tension. We hy-
pothesize that the transition time of dynein from the α to the β
state increases with an exerting force pointing to the plus end of

the MT and decreases with an exerting force pointing to the
minus end of the MT. To test this idea, we applied a force to the
N terminus of the AAA ring pointing to the plus end of the MT,
mimicking the case of the leading head of dynein (Fig. 4B), and
a force pointing to the minus end of the MT, mimicking the
case of the trailing head (Fig. 4C). Because the two forces point
in opposite directions, the two corresponding torques have
opposite effects. For the leading head the torque inhibits the
rotation, while for the trailing head the torque favors the ro-
tation. Indeed, in the absence of forces, the head rotates by 75°
(Figs. 3 and 4A; the angle decreases from 150 to 75°). In con-
trast, with the torque, the leading head rotates only 50° (Fig.
4B; the angle changes from 150 to 100°) while the trailing head
rotates up to 100° (Fig. 4C; the angle changes from 150 to 50°).
Importantly, the averaged transition time from the α state to
the β state, Ttr, is affected. The transition time for the trailing
head is two times shorter than that for the leading head (Fig. 4
B and C). Our simulations therefore indicate that the trailing
head reaches the β state (the weaker binding state) before the
leading head does; thus, the trailing head is released from the
MT earlier than the leading head. Noticeably, due to the usage
of the coarse-grained model, Ttr measured from simulations is
only used to qualitatively describe the transition time. Quanti-
tatively, a more accurate estimation is performed by analytical
modeling in the next section, which indicates that, at a force of
2 pN, Ttr for the trailing head is 10 times shorter than that for
the leading head. In addition, we have assumed the force to be
horizontal as in the experiments (16, 17). We have also ex-
plored additional force directions (SI Appendix, Fig. S2) and
noticed that, as long as they are pointing to the plus end of the
MT, the transition time of dynein from the α to the β state
increases. This increase is smaller for larger angles between the
force and the x axis.
To further demonstrate the importance of the rotation for the

structural transition from the α state to the β state, we designed
two new simulations in addition to the former case as the control.
First, we kept the force unchanged but added an energy term to
the Hamiltonian to inhibit the rotation (details are given in SI
Appendix). If the rotation is essential for the transition, inhibiting
the rotation will significantly increase the transition time com-
pared with the time in the case with uninhibited rotation (Fig.
5A). If the rotation is not important for the transition, the
transition time should remain unchanged. Our results indeed
show a threefold increase in the transition time after the rotation
is inhibited (Fig. 5B). Second, we removed the tension but added
a torsional energy term to the Hamiltonian (Fig. 5C) to accel-
erate the rotation. We observed that the transition time de-
creased by half compared with that of the control (Fig. 5A).
These results strongly supported the idea that the interhead
tension regulates the transition from the α to the β state by
modulating the rotation of dynein.

Analytical Model for the Detachment Rates of Cytoplasmic Dynein
from MT. To quantitatively understand the detachment rate of
the cytoplasmic dynein from an MT, we develop a simple phe-
nomenological model of the detachment process that can be
explicitly solved. It is assumed that the dynein motor head can be
found in only one of two states: the α state or the β state. Then,
the overall detachment rate δ can be written as the weighted sum
of being in the α state and in the β state. Each term is weighted
by the probability of the corresponding conformation:

δðFÞ= pαðFÞδαðFÞ+ pβðFÞδβðFÞ, [1]

where pα and pβ are the stationary probabilities of state α and
state β, respectively.

Fig. 3. Kinetic probability distribution produced by an ensemble of 250
unbiased kinetic simulations from the α to the β state, as a function of Qstalk

and the angle between the normal vector of the AAA ring (red dashed ar-
row) and the main axis of the MT (blue arrow). The unit of the probability
distribution is kBT. The AAA ring is illustrated as a blue disk with a hole in the
center.
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The interhead tension has two effects on the system. First, this
tension increases the detachment rate of the α and β states (31)
according to

δα,βðFÞ= δα,βð0Þ× e
Fd
kBT , [2]

where d is an empirical parameter with a dimension of size. Its
physical meaning is the distance at which the motor head should
be separated from the MT to be considered dissociated. Second,
this tension influences the probability of conformation in the α or
the β state. Without tension, the ratio between the probabilities
of the two states is determined by the free energy ΔG:

pαð0Þ
pβð0Þ= eΔG=kBT . [3]

However, in the presence of tension, the ratio changes due to the
work performed by the torques on the motor heads, yielding

pαðFÞ
pβðFÞ= e

ΔG
kBT+

Zπ=2

0

Fp
spsinθ
kBT

dθ

, [4]

where s is the displacement of the N terminus of AAA ring after
the rotation projected to the main axis of the MT (Fig. 6A). This
displacement is equal to 2.5 nm as determined in our simula-
tions. spsin θ is the momentum arm measured from the axis while
θ is the rotation angle (Fig. 6A). The overall detachment rate as a
function of the interhead tension can be obtained by solving

coupled Eqs. 1–4. Previous experiments estimated that the MT
binding affinity of the α state is at least one order of magnitude
larger than that of the β state (30). To simplify the calculation,
we assume that δβð0Þ = 20pδαð0Þ. Therefore, we have three free
parameters that can be varied: d, δαð0Þ, and ΔG. One result
obtained by utilizing the parameter set d = 1.0 nm, δαð0Þ =
0.2/s, and e−ΔG=kBT = 0.2 is presented in Fig. 6B. Our results show
that for the trailing head (tension > 0 in Fig. 6B), the detachment
rate increases with the tension, while for the leading head (ten-
sion < 0 in Fig. 6B) the rate is insensitive to the tension. We were
able to semiquantitatively reproduce previous experimental data
(16, 17), which further supports our main conclusion. We esti-
mated that for a force of 2 pN, the ratio between the transition
time of the trailing head and that of the leading head is

e
2p
Rπ=2
0

Fpspsin θkBT dθ
= 10.8.

Discussion
Our investigation was stimulated by previous experimental ob-
servations (7, 16, 17, 32) showing that the detachment rate of
cytoplasmic dyneins from an MT in the presence of a force de-
pends on the direction of the force. With the help of a structure-
based computational model, we identified that the rotary motion
of the motor heads is coupled to the conformational change from
the α state to the β state. We recognize that a previous cryo-EM
study (19) did not show an orientation perpendicular to MT long
axis as predicted by our model. Our model shows, however, that
the perpendicular state only needs to be slightly populated to
be consistent with the profile of the experimental detachment
rate with respect to tensions. Actually, just 5% occupation is

Fig. 4. Kinetic simulations of a cytoplasmic dynein during the transition from the α to the β state influenced by the interhead tension F. (A–C) Kinetic
probability distribution produced from 250 unbiased kinetic simulations from the α to the β state: (A) F = 0, the same as Fig. 3; (B) F = 2 pN pointing to the plus
end of the MT, mimicking the leading head; and (C) F = −2 pN point to the minus end of the MT, mimicking the trailing head. The x and y axes follow the
definitions in Fig. 3. The red arrows represent the normal vector of the AAA ring. The blue arrow represents the walking direction of the dynein. The gold
arrows represent the rotation from the α to the β state. We show the AAA ring for visualization only. For each case, the average transition time from the α to
the β state, Ttr, is represented by error bars. τL is the time unit used in our coarse-grained simulations.
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sufficient (SI Appendix, Fig. S1). This state is probably an ex-
cited state and may therefore be difficult to be observed
experimentally.
Although our simulations focused on a single motor head in

the presence of forces, we inferred that a dimeric cytoplasmic
dynein coordinates its two motor heads as follows (Fig. 6C). The
interhead tension creates opposing torques that break the sym-
metry in the dynamic behavior of two heads. For the trailing
head, the rotation is accelerated by the tension so that the
transition rate from the α state (strong binding to the MT) to the
β state (weak binding to the MT) increases. This change guar-
antees that on average the trailing head detaches from the MT
before the leading head. For the leading head, the rotation is
inhibited by the tension. Therefore, the leading head tends to
remain in the α state (strong binding to the MT). This situation
allows the leading head to attach to the MT stably when the
trailing head steps forward.
Previous studies (8, 19) suggested that interhead tension can

influence the interhead coordination by changing the angle be-
tween the stalk and the MT. We measured this angle in simula-
tions. Without force, this angle is 44°. With a force pointing to the
plus end of the MT, which mimics the force on the leading head,
this angle decreases to 35°, while with a force pointing to the
minus end of the MT, which mimics the force on the trailing head,
this angle increases to 71°. Therefore, our coarse-grained model
qualitatively reproduced the trend observed in a previous experi-
ment (19) showing that interhead tension decreases the angle of
the leading head and increases the angle of the trailing head.
One might assume that for the trailing head, increasing the

angle between its stalk and MT will decrease the transition time
Ttr from the α to the β state. Therefore, it is vital to determine
whether the change in the stalk angle or the rotary motion of
dynein is the major factor influencing the stalk registry. We ex-
plore this matter in Fig. 5. In Fig. 5B, we added an external force
but inhibited the rotation. In this case the angle between the
stalk and MT increased from 44 to 90° by the force. The tran-
sition time Ttr should decrease if the dominant cause is the stalk
angle. The opposite takes place: Ttr significantly increases in the
simulation (Fig. 5B vs. Fig. 4A). In Fig. 5C the external force is
removed but the angular acceleration of the rotation is in-
creased, causing a decrease of Ttr (Fig. 5C vs. Fig. 4A). In this
case, the angle between the stalk and the MT under these two
cases does not change (45° vs. 44°). Therefore, the faster tran-
sition likely arises from the accelerated rotations. Due to the
usage of a coarse-grained model, we cannot completely exclude

the possibility that the interhead tension could also coordinate
the two heads by changing the angle between the stalk and the
MT (8, 19) or by changing the direction in which the stalk bends
(18). Nevertheless, these results strongly suggest that the rotation
of dynein seems a probable mechanism that should be tested by
experiments.
The rotation of the AAA ring is caused by a rotary motion

between the coils of the stalk when the stalk switches between
the α and the β registries. The existence of the AAA ring is not
mandatory for the coordination between the two motor heads
because the interhead tension can still create torque through
rotation of the stalk. This result is consistent with a previous
experimental finding showing that the coordination between the
two heads still exists in a dynein construct without the AAA ring
(16). Similar rotary motion has been observed for other motor
proteins as well. Kinesin-1 has been observed to rotate under
saturated ATP concentrations, which produces significant tor-
ques (33, 34). It would be interesting to study whether the rotary
motion is a common feature of the regulation mechanisms in

Fig. 5. Averaged time spent during the transition from the α to the β state in the simulations influenced by the rotation of dynein. (A) F = 2 pN, and the
rotation of dynein is unperturbed (the same as Fig. 4C). The amplitude of the angular acceleration is presented by the size of the golden arrow. For B and C,
an external torsional energy term E is added to modulate the angular acceleration (see the last paragraph in SI Appendix). (B) F = 2 pN. E is modulated so that
the angular acceleration is zero (rotation of dynein is inhibited). (C) F = 0. E is modulated so that the angular acceleration largely increases. We show the AAA
ring for visualization only. For each case, the average transition time from the α to the β state, Ttr, is represented by error bars. τL is the time unit used in our
coarse-grained simulations.

Fig. 6. Phenomenological model to understand the interhead coordination of
cytoplasmic dyneins. (A) Illustration of the rotation of a motor head (top view).
(B) Analytical result of the detachment rate of a motor head from an MT as a
function of interhead tension. For the trailing head, the tension is larger than
zero (forward). For the leading head, the tension is less than zero (backward).
Previous experimental data can be found in ref. 16. (C) Our model for un-
derstanding the interhead coordination of a dimeric cytoplasmic dynein. The
AAA ring is colored blue. The stalk is colored pink. The MTBD is colored green.

10056 | www.pnas.org/cgi/doi/10.1073/pnas.1806688115 Wang et al.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 F
O

N
D

R
E

N
 L

IB
R

A
R

Y
 M

S 
23

5 
on

 O
ct

ob
er

 5
, 2

02
2 

fr
om

 I
P 

ad
dr

es
s 

16
8.

5.
62

.1
64

.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806688115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806688115/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1806688115


motor proteins. In addition, since we believe that the interhead
tension regulates the detachment rate of dynein by regulating the
transition from the α to the β state, we emphasize here that any
other factors influencing the transition can also regulate the
detachment rate of dynein. This influence can be achieved
through an allosteric communication within the AAA rings in an
ATP binding cycle (35). It can also be modified by mutations on
the stalk. Indeed, the coordination between the two heads dis-
appears upon either prevention of the relative motion between
the coils of the stalk or deletion of the structural segment named
the strut that connects the stalk and the AAA ring (32).
The rotary motion proposed in this work might influence the

motion of dynein in additional aspects besides regulating the
detachment rate of dynein. The crystal structure of human cy-
toplasmic dynein-2 (22) suggested that there is a coupling be-
tween the bent structure of the linker domain and the β state of
the stalk. As detailed above, the interhead tension increases the
probability of the β state for the trailing head. It might contribute
to the conformational change of its linker domain from straight
to bent (the prepowerstroke state).
The motility of cytoplasmic dyneins is a multifaceted property.

In addition to the interhead coordination, several other factors
are important for the motility. For example, dynactin (36) is one
of the protein molecules that activate dyneins’ processivity in the
cellular transport. A recent experiment from Carter and co-
workers (37) pointed out that dynactin influences dynein step-
ping by reorienting the motor domains to interact correctly with
MT. This new development provides an essential insight into our

next theoretical studies of dynein motor proteins that will involve
dynactin as well as cargo adaptor proteins (38).

Methods
We used the Cα-only SBM (39) to represent a single head of a cytoplasmic
dynein bound to an MT fragment of 16-nm length. The Hamiltonian of the
system follows a previous developed self-organized polymer model (27, 29)
with several modifications. The details of the Hamiltonian can be found in SI
Appendix. The model was created by using the web server SMOG (40). A
force of 2 pN was exerted on the N terminus of the AAA ring to mimic an
interhead tension. For the trailing head, the exerted force pointed to the
minus end of the MT. For the leading head, the exerted force pointed to the
plus end.

We used the Langevin equations of motion for the coarse-grained mo-
lecular simulations. An in-house version of Gromacs 4.5 was developed (40,
41), where the nonbonded interactions was represented by a Gaussian for-
mula (42). The Langevin equations of motion were integrated in the low
friction limit with a damping coefficient of 1.0 τL−1 (43). The integration time

step is 10−3τL, where τL = ðmσ2=«Þ0.5. m is the mass of a Cα bead. « is the
solvent-mediated interaction. σ is the van der Waals radius of a Cα bead. For
each condition, 250 unbiased kinetic simulations were performed. Each
simulation last 107 steps, which guaranteed a successful transition from the α
to the β state. Data from all trajectories were collected and analyzed. Ob-
servables (Figs. 2A, 3, and 4) were expressed as G=−kBTlnP, while P was the
probability collected from in the raw data. G is named the “kinetic proba-
bility distribution,” a quantity used in previous work (44, 45).
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