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One of the most intriguing features of biological systems is their
ability to regulate the steady-state fluxes of the underlying bio-
chemical reactions; however, the regulatory mechanisms and their
physicochemical properties are not fully understood. Fundamen-
tally, flux regulation can be explained with a chemical kinetic
formalism describing the transitions between discrete states, with
the reaction rates defined by an underlying free energy land-
scape. Which features of the energy landscape affect the flux
distribution? Here we prove that the ratios of the steady-state
fluxes of quasi–first-order biochemical processes are invariant to
energy perturbations of the discrete states and are only affected
by the energy barriers. In other words, the nonequilibrium flux
distribution is under kinetic and not thermodynamic control. We
illustrate the generality of this result for three biological pro-
cesses. For the network describing protein folding along compet-
ing pathways, the probabilities of proceeding via these pathways
are shown to be invariant to the stability of the intermediates
or to the presence of additional misfolded states. For the net-
work describing protein synthesis, the error rate and the energy
expenditure per peptide bond is proven to be independent of the
stability of the intermediate states. For molecular motors such as
myosin-V, the ratio of forward to backward steps and the number
of adenosine 5′-triphosphate (ATP) molecules hydrolyzed per step
is demonstrated to be invariant to energy perturbations of the
intermediate states. These findings place important constraints
on the ability of mutations and drug perturbations to affect
the steady-state flux distribution for a wide class of biological
processes.

properties of biological processes | nonequilibrium stationary
dynamics | kinetic control | chemical kinetic analysis

Chemical kinetics represents a fundamental mesoscopic for-
malism to understand many biological phenomena with a

wide range of major cellular processes described in terms of
the complex networks of biochemical reactions (1). When the
mechanistic details of the process are known, the underlying
mechanisms can be represented as elementary steps described
by mass-action kinetics of first-order reactions (e.g., for cataly-
sis, conformational transitions, and dissociation) or second-order
reactions for bimolecular binding transitions. This formalism
allows one to study the kinetics of enzymatically controlled reac-
tions and resulting kinetic laws (2), transformations between
different states of promoters and resulting transcription rates
(3–6), transitions between receptor complexes and resulting sig-
naling (7, 8), and many other phenomena (9, 10). In many of
these examples, the timescale of changes in the concentrations
of unbound molecular species is much slower than the timescale
of transitions between the states of the macromolecular sys-
tems. For example, concentrations of substrates and products
of enzymatic catalysis change much more slowly than transi-
tions between the different enzyme states (11). In this regime,
second-order binding reactions can be effectively approximated
as quasi–first-order transitions. As a result, the kinetic equa-
tions are linear, yielding a so-called linear framework (12). In

the steady state, the resulting linear algebraic equations can be
easily solved to compute probabilities, fluxes, and many other
important quantities.

For an arbitrary chemical network with elementary chemi-
cal transitions, the kinetics can be fundamentally understood
in terms of the underlying free energy landscape. Assuming
that thermal equilibrium in each chemical state is reached
much faster than the timescale of the chemical transitions, the
rate of each step can be expressed in terms of the activa-
tion energy, that is, the difference between the energy of the
state and the barrier separating the states (13). The result-
ing expression of the rate constants is often referred to as the
transition state theory (14). We note that, in this picture, the
free energy landscape emerges naturally as a consequence of
the microscopic description of a process through elementary
chemical steps.

For reaction networks with cycles that do not change the
concentrations of the molecular species in the cellular envi-
ronment, the underlying chemical reaction rates are subject to
the detailed balance constraints (15). In that case, the result-
ing steady-state probabilities are computed from the Boltzmann
distribution, and they only depend on the free energy of the
states that are independent of the free energy barriers (15).
For example, models of binding and dissociation of transcrip-
tion factors to DNA and resulting transcription rates in bacteria
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are often calculated in the equilibrium thermodynamics frame-
work (16, 17). This regime is often referred to as thermodynamic
control, in contrast to the kinetic control regime when the bar-
rier heights determine the resulting distributions (18). In many
other biologically relevant cases, transitions between states of the
macromolecular system are coupled with the changes in the pool
of cellular cofactor molecules. If the cycles in the network change
the chemical composition of the cellular environment, the sys-
tem reaches a nonequilibrium steady state where nonvanishing
net fluxes are possible (15). For example, transitions between
states of enzymes and molecular motors can be coupled to the
hydrolysis of adenosine 5′-triphosphate (ATP) (19, 20). In the
nonequilibrium steady state, the steady-state probabilities and
the fluxes can depend on the energies of the transition states.
Thus, nonequilibrium steady states may be under a combina-
tion of thermodynamic and kinetic controls, and it is not clear
which features of the free energy landscape control key system
properties (21).

The nonzero values of net fluxes in the nonequilibrium steady
state have important biological implications. For example, the
rate of an enzymatic reaction, the speed of a molecular motor,
and many other crucial characteristics are proportional to these
steady-state fluxes (15, 22). Moreover, many important proper-
ties can be related to the ratios of the steady-state fluxes. Specif-
ically, the enzyme selectivity or the error rate that quantifies the
ability of enzymes to discriminate between right (cognate) and
wrong (noncognate) substrates can be expressed as the ratio of
the catalytic fluxes to the corresponding states (19, 21, 23). In the
same way, the efficiency of a molecular motor can be expressed in
terms of the ratio of forward-stepping and futile cycle fluxes (22,
24). Notably, our previous research (25) has shown that, for both
Michaelis–Menten and the Hopfield kinetic proofreading (KPR)
mechanism (19), the error rate is purely under kinetic control.
As such, the error rate is only a function of the differences in the
free energy barriers for pathways leading to the right and wrong
substrates, and it is independent of the differences of the stabil-
ities of the corresponding states. However, the results in ref. 25
were limited in scope and had no clear physical explanation. The
generalization of these conclusions to the other quantities is not
obvious.

In this work, we use a chemical kinetic formalism to deter-
mine how steady-state probabilities and the flux distribution
of the underlying biochemical reactions are affected by per-
turbations of the underlying free energy landscape. We illus-
trate the generality and the biological implications of our
results by specifically studying three diverse biological systems.
The examples include 1) two alternative pathways for pro-
tein folding in the presence of misfolded error states, which
is motivated by folding pathways in hen egg-white lysozyme
(26, 27); 2) a Hopfield KPR network describing aminoacyl
transfer RNA (aa-tRNA) selection during protein translation
in the Escherichia coli ribosome (19, 25, 28–31); and 3) the
myosin-V motor protein that walks along actin cytoskeleton
filaments (22, 24).

The results demonstrate that an arbitrary ratio of the steady-
state fluxes is invariant to the energy perturbations of the stabili-
ties of the discrete states and, therefore, is only dependent on the
free energy barriers. In other words, we demonstrate that the bio-
logical properties that are expressed in terms of the steady-state
flux ratios are governed by kinetic and not by thermodynamic fac-
tors. These results have wide-ranging implications for the types
of genetic or chemical perturbations capable of changing the
steady-state flux distribution through biochemical reaction net-
works. Generally, the values of the free energy barriers correlate
with the free energies of the states (32). However, even though
mutations can perturb both the free energy barriers and the sta-
bility of the minima, it is important to know that the latter energy
parameters do not affect the flux ratios. Thus, our result can

direct experimental measurements of the underlying free energy
landscape.

Methods
Notation and Setup. Consider an arbitrary biochemical system described by
the linear formalism (12), that is, by a chemical kinetic network with quasi–
first-order transitions between N biochemical states (Fig. 1A) with the rate
constant for a reaction i→ j (i.e., a transition from the ith state to the
jth state) denoted as ki,j . Generally, there could be multiple elementary
reactions between states i and j. Therefore,

ki,j =
∑
ω

kωi,j , [1]

where the index ω runs over all of the possible reaction pathways i→ j. For
each elementary reaction, the rate constants kωi,j can be expressed as the
product of a prefactor and an exponential free energy barrier term (e.g., as
in transition state theory),

kωi,j = k0ω
i,j e

εi−ε
†ω
i,j , [2]

in which the prefactors of the bimolecular reactions that were initially sec-
ond order (i.e., with cofactor binding steps) included the dependence on
the chemical potentials µγ of the these cofactors (see SI Appendix for def-
inition of the prefactor k0ω

i,j 6= k0ω
j,i ). Here, εi is the energy of the ith state,

and ε†ωi,j = ε†ωj,i are the transition state energies in units of kBT (Fig. 1B).
In the limit of t→∞, the system is characterized by a stationary prob-

ability distribution vector with N components, P = [P1, P2 . . . , PN]T , that
can be obtained by solving a set of steady-state equations subject to the
normalization condition,

K · P = 0 and 1T · P = 1, [3]

where 1 is an N× 1 unit vector, and K is an N×N rate matrix,

Kj,i =

{
ki,j , for j 6= i

−
∑

i 6=j ki,j , for j = i.
[4]

Assuming this matrix is not rank deficient, Eq. 3 has a unique solution for P.
The corresponding steady-state fluxes for i→ j are given by Jωi,j = kωi,j Pi .

Depending on whether the rate constants k0ω
i,j are subject to the detailed

balance constraints, this formalism can describe both equilibrium and
nonequilibrium steady states. In the former case, the fluxes balance Jωi,j = Jωj,i ,
and the stationary probability distribution corresponds to the Boltzmann
distribution (15). Below, we explore nonequilibrium steady-state fluxes and
the probabilities.

Perturbation of the Free Energy Landscape. Consider a perturbation that
decreases the energy of an arbitrary state m on the free energy landscape
of the system by an amount ∆εm, that is, such that its energy changes to
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Fig. 1. General biochemical kinetic network and its free energy landscape.
(A) Biochemical network comprising N different states. The discrete states
are denoted by numbers 1, . . . , N, and the cofactor molecules in the bath
are denoted as Xi and Xj . (B) Free energy landscape for a reaction between
states i and j with well depths εi and εj and the transition state energy ε†ωi,j .
The rate constants kωi,j and kωj,i correspond to the forward and reverse reac-
tions between the two states i and j on the pathway ω. Note that the energy
of state j is decreased by an amount ∆εj (red dashed curve) such that its
energy is ε′j = εj −∆εj .
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ε′m = εm−∆εm (Fig. 1B). Here and below, the prime symbol ′ denotes the
parameters following this perturbation. Assume that the energies of other
states, namely, the transition state energies ε†ωi,j , and the chemical poten-
tials µγ (SI Appendix, Eqs. S7–S9) of all of the cofactor molecules are held
constant.

From Eq. 2, the perturbation reduces all of the rate constants for the
reactions m→ j by a factor of e−∆εm , but all of the other rate constants
kωi,j remain the same. As a result, the perturbed steady-state probability
distribution P′ satisfies equations of the form of Eq. 3 with the perturbed
matrix K′,

K′j,i =

{
Kj,i , for i 6= m

Kj,me−∆εm , for i = m,
[5]

that is, with the entire mth column scaled by a factor of e−∆εm . It is not
hard to show (SI Appendix, Eq. S19) that the perturbed probabilities P′i can
be expressed in terms of the unperturbed probabilities Pi as follows:

P′i =

{
αPi , for i 6= m

αPme∆εm , for i = m,
[6]

with normalization constant α= 1/(
∑

j 6=m Pj + Pme∆εm ) that guarantees

the conservation of probability, 1T · P′ = 1.

Invariance of the Ratios of the Steady-State Fluxes. From Eq. 6, we conclude
that all of the steady-state fluxes are scaled by the same factor,

J′ωi,j ≡ k′ωi,j Pi
′
=αJωi,j , ∀ i and j. [7]

The factor α cancels out for all of the ratios of the perturbed steady-state
fluxes, and we demonstrated that

∂
(

J′ωi,j /J′ωl,n
)

∂∆εm
= 0, ∀ i (l) and j (n). [8]

Therefore, we conclude that the ratios of stationary fluxes or any of their
linear combinations do not depend on the energies of the individual states
εi and only depend on barrier heights ε†ωi,j .

Illustrative Examples. To illustrate the implications of Eq. 8, we use three
major biological processes: protein folding networks inspired by hen egg-
white lysozyme, a KPR network for aa-tRNA selection during protein
translation in the E. coli ribosome, and the myosin-V motor protein that
walks on the actin cytoskeleton filaments. For simplicity of the notation,
we drop all of the prime ′ and ω superscripts on the perturbed steady-state
fluxes.

Data Availability
The kinetic parameters used for illustrative examples from refs.
24, 27, 30–34 are given in SI Appendix, Tables S1–S3.

Results
Protein Folding Network. Protein folding is a fundamental pro-
cess that is required for all living cells to maintain their proper
functionality. Indeed, misfolded proteins and their aggregation
have been linked to many types of pathological diseases (35).
Protein folding occurs via a series of different funnels on a free
energy landscape, and, as such, the process can be described
using the chemical kinetic formalism for biochemical networks
(15, 26, 27). Protein folding often does not require any energy
consumption, and, therefore, it can be studied within the equi-
librium thermodynamics framework (15, 35). On the other hand,
in live cells, all proteins are synthesized in the unfolded states
and degraded/diluted in the relatively stable folded states. In this
situation, a nonequilibrium steady-state distribution of fluxes in
a protein folding network can give information about the relative
importance of different folding pathways and the probability of
reaching incorrect metastable folding states.

Here, we consider a kinetic scheme representing the pro-
tein folding inspired by hen egg-white lysozyme (27, 33). For
this enzyme, two mechanistic descriptions, namely, independent
unrelated pathways (IUP) and predetermined pathways with
optional error (PPOE), have been proposed. The IUP model
(alias a heterogeneous folding) assumes that protein folding
occurs through various intermediate states on different path-
ways that have no relationship to one another (26). On the other
hand, the PPOE model supposes that all proteins fold coopera-
tively through the same productive pathway via partially folded
subunits called foldons that resemble the correctly folded struc-
ture. However, during the folding process, the protein may also
become diverted into multiple misfolded error states that hinder
productive folding (26).

We chose a kinetic scheme (Fig. 2A) that combines the phys-
icochemical aspects of both the IUP and PPOE models. There
are two possible pathways for the unfolded protein in state 1 to
reach the folded (native) conformation in state 3 on this bio-
chemical kinetic network. This means that productive protein
folding can proceed independently through either of the inter-
mediate states 2 or 4. However, the protein may also become
trapped in the misfolded error states denoted, respectively, as
5 and 6 on the two folding pathways. The misfolded error
states 5 and 6 can be viewed as traps on the free energy land-
scape that might kinetically block productive protein folding
into the folded conformation (state 3) on the two different
pathways. To realize the nonequilibrium steady state and the
nonzero fluxes in this network, we assume that the protein is
synthesized in state 1 and degraded from state 3 with the rate
constant k�,1. In the nonequilibrium steady state, the synthesis
and degradation fluxes are balanced so that we can map this
scheme to the formalism considered in Methods by effectively
introducing an irreversible 3→ 1 transition with the rate k�,1

(similar to ref. 36).
We can now apply our analysis to ask how the steady-state

folding flux splits between the top pathway via state 2 (JT =
k1,2P1− k2,1P2) and the bottom pathway via state 4 (JB =
k1,4P1− k4,1P4). Eq. 8 implies that the steady-state flux ratio will
be independent of the stability of the intermediate states and is
only affected by the free energy barriers. For example, consider
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Fig. 2. Steady-state fluxes and their ratio for a protein folding network
from folding pathways in hen egg-white lysozyme from refs. 27 and 33.
(A) Protein folding network through two independent pathways via inter-
mediate states 2 and 4 (with misfolded error states 5 and 6) to reach the
folded conformation in state 3 from the unfolded state 1. (B) Steady-state
fluxes JT and JB that decay to zero as a function of the energy perturbation
∆ε2. (C) Ratio of the steady-state fluxes JT/JB as a function of the energy
perturbation ∆ε2. (D) JT/JB as a function of the rate constant k2,5 for the
reaction 2→ 5.

8886 | www.pnas.org/cgi/doi/10.1073/pnas.1920873117 Mallory et al.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 F
O

N
D

R
E

N
 L

IB
R

A
R

Y
 M

S 
23

5 
on

 S
ep

te
m

be
r 

22
, 2

02
2 

fr
om

 I
P 

ad
dr

es
s 

16
8.

5.
38

.3
5.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1920873117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1920873117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1920873117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1920873117


BI
O

PH
YS

IC
S

A
N

D
CO

M
PU

TA
TI

O
N

A
L

BI
O

LO
G

Y

a change in the energy of state 2 by ∆ε2. This perturbation will
change both JT and JB proportionally in Fig. 2B . As a result,
the ratio of the steady-state fluxes JT/JB does not change as a
function of ∆ε2 (Fig. 2C ). The result is also apparent from the
analytic expression for JT/JB (SI Appendix, Eq. S28). Notably,
the presence of the misfolded error states 5 and 6 is mathemat-
ically equivalent to the perturbations of the energy of states 2
and 4, respectively. Therefore, the ratio of the steady-state fluxes
JT/JB does not depend on the rate constant going into or out of
these states (e.g., k2,5 in Fig. 2D). Thus, the stability or presence
of a misfolded error state does not affect how the steady-state
flux splits between the two folding pathways. Notably, identical
results can also be obtained using the approach developed in ref.
36. However, our approach is arguably more general as it extends
to the networks with futile cycles.

KPR Network. Enzymatic catalysis in the presence of right (cog-
nate) and wrong (noncognate) substrates can often achieve high
selectivity through KPR mechanisms with the use of guanosine
triphosphate (GTP)/ATP hydrolysis energy. For such networks,
the flux distribution can be used to quantify the probability of
reaching the wrong product state (error rate) or the probabil-
ity of futile cycles that result in hydrolysis without any product
formation. Here we consider a KPR network that enhances
the accuracy of aa-tRNA selection in the E. coli ribosome
(19, 28, 29, 34) during protein translation, and it is shown in
Fig. 3A. It contains two symmetric cycles involving the right R
(cognate) or the wrong W (noncognate) aa-tRNA molecules
and two ways to reset from states 3/5 to the initial state 1.
This can occur via a catalytic step resulting in product for-
mation (rates k

(2)
3,1 /k (2)

5,1 ) or via a proofreading step that results
in aa-tRNA excision (rates k

(1)
3,1 /k (1)

5,1 ). The steady-state ratios
of the corresponding fluxes define important system properties
of the enzyme.

The error rate can be defined as the fraction of times the
noncognate amino acid is incorporated into a protein, that is, as
a ratio of JW = k

(2)
5,1P5− k

(2)
1,5P1 to JR = k

(2)
3,1P3− k

(2)
1,3P1. Per-
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Fig. 3. Steady-state fluxes and their ratios for the KPR network describ-
ing aa-tRNA selection in the E. coli ribosome. (A) KPR scheme where the
right R or the wrong W aa-tRNA molecule can bind to free enzyme state 1.
The network from kinetic schemes in refs. 25, 30, 31 comprises two cycles:
a proofreading cycle with R* or W* and a product formation cycle with
products PR or PW. (B) Steady-state fluxes for addition of the wrong amino
acid JW and the right amino acid JR that decay to zero as a function of
the energy perturbation ∆ε3. (C) Error rate JW/JR. (D) Normalized energy
dissipation σN.

turbations of the energy of an intermediate state (e.g., state 3 in
Fig. 3 B −D) will change the individual fluxes in Fig. 3B , but
the ratio of the fluxes in Fig. 3C will remain invariant. This is
a straightforward consequence of Eq. 8, and it generalizes the
result of ref. 25. We can also conclude that the error rate will be
invariant to perturbations of the discrete-state energies even in
the presence of multiple competing pathways, multiple interme-
diate states, and/or multiple proofreading reactions. Therefore,
the error rate in more complex KPR networks is under kinetic
control as long as it can be expressed as a ratio of the steady-state
fluxes in the linear chemical kinetic framework.

Energy efficiency of the ribosome can be quantified by looking
at the number of GTP molecules hydrolyzed per peptide bond
(19) or as the energy dissipation per product formed normalized
by the GTP hydrolysis energy, that is,

σN ≡
σ

Jp∆µproof
=

Jproof
Jp

+
∆µp

∆µproof
. [9]

Here, σ is the total energy dissipation in the nonequilibrium
system, while ∆µproof and ∆µp are the respective chemical
potential differences of the proofreading and the catalytic cycles
in the biochemical network. The product formation flux is Jp =

JR + JW , and the proofreading flux is given by Jproof = k
(1)
3,1P3−

k
(1)
1,3P1 + k

(1)
5,1P5− k

(1)
1,5P1. The ratio of these fluxes and the nor-

malized energy dissipation σN will again be invariant to the
energy perturbation of an intermediate state, for example, ∆ε3
(Fig. 3D).

Myosin-V Network. Motor proteins belong to a broad class of
enzymes that convert chemical energy (e.g., from ATP hydrol-
ysis) to perform mechanical work in cells. For example, motor
proteins in cells that hydrolyze ATP use the hydrolysis energy to
walk on the cytoskeletal track while transporting loads of intra-
cellular cargo (20, 22). The motors are often described by kinetic
models (22) that allow one to predict the flux distribution that
defines important properties such as the probability of forward or
backward steps or probability that the motor proteins hydrolyze
ATP but remain at the same position on the track.

Here, for illustration, we examine a kinetic model for myosin-
V in Fig. 4A that shows the intermediate states through which
the motor protein proceeds as it attempts to move one ∼ 36-nm
step along an actin filament (24). The myosin-V network has a
main stepping cycle (via states 1 to 5), where the motor pro-
tein takes one step forward or backward on the actin filament,
and a futile cycle, where the motor protein makes no net move-
ment on the actin filament (via states 2, 3, 4, and 6). During the
futile cycle, myosin-V does not move one step along the actin
filament, and all of the energy from ATP hydrolysis is wasted.
This is not the case for the main stepping cycle, where myosin-V
uses the energy available from ATP hydrolysis to take one step
forward along the actin filament while doing mechanical work
against a load.

The fraction of times that myosin-V takes a backward step is
given by the ratio of the backward stepping flux JB = k2,1P2 to
the forward stepping flux JF = k1,2P1. If the energy of an inter-
mediate state is perturbed, for example, by ∆ε2, the individual
fluxes JB and JF in Fig. 4B will change as well. However, the
ratio of the backward to forward fluxes in Fig. 4C is invariant
to the energy perturbation. This result is easily seen to be a
consequence of Eq. 8 for the motion of the myosin-V motor pro-
tein. Moreover, we can conclude that this ratio of the backward
and forward stepping fluxes will remain invariant regardless of
how many intermediate states or futile cycles are present on the
mechanochemical network.

The energy efficiency of myosin-V can be defined as the frac-
tion of ATP hydrolysis energy consumed during one step on the
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Fig. 4. Steady-state fluxes and their ratios for the mechanochemical net-
work of the two-headed myosin-V motor protein while taking one step
on an actin cytoskeleton filament. (A) Mechanochemical network for the
myosin-V motor protein from ref. 24 comprising two cycles: a futile cycle
and a main stepping cycle. (B) Steady-state fluxes for backward steps JB

and forward steps JF of myosin-V that decay to zero as a function of the
energy perturbation ∆ε2. (C) Ratio of backward to forward steps JB/JF . (D)
Normalized energy dissipation σN.

track (22) or as the energy dissipation per step normalized by the
energy expended from ATP hydrolysis, that is,

σN ≡
σ

Jmain∆µfutile
=

Jfutile
Jmain

+
∆µmain

∆µfutile
. [10]

Here, σ is the total energy consumed during the mechanochemi-
cal process, and ∆µfutile and ∆µmain are the respective chemical
potential differences of the futile cycle and the main stepping
cycle. The main stepping flux is Jmain = k1,2P1− k2,1P2, and
the futile flux is Jfutile = k6,2P6− k2,6P2. The ratio of these two
fluxes and the normalized energy dissipation σN are also invari-
ant to energy perturbations of an intermediate state such as ∆ε2
on the mechanochemical cycle (Fig. 4D).

Discussion
Our main theoretical result shows that the ratios of steady-state
fluxes are independent of energy perturbations of the interme-
diate states on biochemical networks that describe a wide class
of biological processes. This result can be explained using the
following arguments. The energy perturbation at the specific
site leads to a change in the stationary probability of the per-
turbed state and the transition rates out of the perturbed state.
However, the effect of the perturbation is opposite for these
two properties. If the perturbation increases (decreases) the sta-
tionary probability by the exponent of the energy perturbation,
it simultaneously decreases (increases) the outgoing transition
rates by the same factor. In addition, because the total proba-
bility in the system is conserved, the stationary probabilities of
all of the states should be modified by the same normalization
parameter. This leads to changes in all of the steady-state fluxes
in the system by the same parameter, including the fluxes out of
the perturbed state where the changes in the stationary probabil-
ity are compensated by changes in the outgoing transition rates.
As a result, all of the steady-state fluxes are scaled in the same
way, and their ratios remain constant.

The important implication of our theoretical results is that
the properties of major biological processes that depend on
the ratios of steady-state fluxes are governed by kinetic rather
than thermodynamic (energetic) factors of the underlying free

energy landscapes. Specifically, the ratios of any two steady-
state fluxes depend on the transition state energies, but not on
the energies of the discrete (internal) states on the free energy
landscape. Consequently, the physicochemical properties of bio-
logical systems that depend on the ratios of the steady-state
fluxes are exclusively under kinetic control, and any changes in
the well depths of the individual states do not affect these prop-
erties. Therefore, the only way to modify these properties is
to change the energy barriers between the intermediate states.
Moreover, the invariance result is still valid if several energy per-
turbations are simultaneously occurring in the system because
these perturbations are local, and the total effect of the per-
turbations is additive. However, the properties of the systems
expressed in terms of individual fluxes and/or state probabilities
are still affected by perturbations of the discrete-state energies
and, therefore, are subject to a combination of thermodynamic
and kinetic control.

Our theory is applicable to kinetic models of biochemical
systems that, from a single-molecule perspective, are described
by linear master equations, that is, they only involve quasi–
first-order transitions between the discrete states. Despite this
limitation, the framework still applies to a wide range of biologi-
cal processes under the commonly used assumption of timescale
separation (12). These processes include enzyme catalysis and
allosteric control, processive motion of molecular motors, recep-
tor signal transduction, ion channel transport, transcriptional
regulation, and posttranslational modification (12). To illustrate
the biological relevance of our theoretical findings, we applied
them to three major biological processes, namely, protein fold-
ing via multiple pathways, aa-tRNA selection during protein
translation, and the myosin-V molecular motor dynamics. Our
examples reveal some counterintuitive implications for specific
experimentally observable quantities.

For the protein folding network motivated by the hen egg-
white lysozyme system, we find that the splitting fractions for
the different pathways along which the protein can fold do not
depend on the energy (well depths) of the intermediate states
as long as the transition-state energies are constant. Mathemat-
ically, such perturbations are equivalent to the introduction of
misfolded error states (26, 27). Our invariance results imply that
the existence of such states or generally the existence of mul-
tistate dead-end branches from the intermediate states will not
affect the splitting fractions. The results are clearly generaliz-
able to kinetic models of protein folding in which multiple stable
folding conformations are present, for example, when there is a
possibility of prion states (37). Our results also imply that the
flux splitting between the native and prion conformations would
require changes in the free energy barriers and not in the well
depths along each of the folding pathways. Thus, a drug that
binds to and stabilizes the intermediate but needs to dissociate
before the transition states are reached cannot affect the flux
splitting.

Our examination of the biochemical network for aa-tRNA
selection in the E. coli ribosome (19, 23, 25, 30, 31) demonstrates
that our invariance statement holds in the presence of energy-
dissipating cycles on the network. We show that both the error
fraction and the normalized energy dissipation can be expressed
as flux ratios, and, therefore, they are invariant to changes in
the energies of the intermediate states on the underlying free
energy landscape. Hence, genetic mutations in the ribosome (28,
34) that cause changes in these properties must affect the kinetic
features of the free energy landscape.

Finally, for the physicochemical properties of myosin-V, we
show that the ratio of the forward and backward stepping fluxes
and the normalized energy dissipation are invariant to energy
perturbations of all of the intermediate states. This indicates
that the energy expenditure from ATP hydrolysis during the pro-
cessive motion of the myosin-V motor protein (20, 22, 24) is
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exclusively under kinetic control as long as the external force
Fexternal remains constant. Consequently, drugs that specifi-
cally stabilize different states on the mechanochemical network
for myosin-V but have to dissociate before the transition to
the next or to the previous state can occur do not affect the
ratio of the energy efficiency or the ratio of the forward to
backward steps.

We note that the stationary flux ratios will change if the energy
perturbations of individual states are coupled to changes in the
free energy barriers. However, our invariance results can have
important implications for such cases. Identical effects on the
steady-state flux ratios are expected from two mutations stabiliz-
ing the transition state by the same mechanism and thus resulting
in identical changes of the transition state energy barriers ε†i,j .
That will be the case even if mutations affect the state stabilities
εi differently (see SI Appendix for discussion on energy coupling
in protein folding from Φ-value analysis). Therefore, even for the
perturbations affecting both the energy barriers and the energies

of the states, it is important to know that the changes in the lat-
ter do not affect the physical properties that depend on the flux
ratios.

Our theoretical study presents a general statement on how
kinetic models that provide a quantitative description of a wide
class of biological systems can be affected by the underlying fea-
tures of the free energy landscape. This result pinpoints a hidden
symmetry in the underlying equations, which places important
constraints on the mechanism for the regulation of important
system-level properties. It will be important to see the implica-
tion of the invariance results for other biological systems and to
determine whether the result can be extended to an asymptotic
flux behavior away from the steady state.
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