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ABSTRACT The stochastic driving force exerted by a sin-
gle molecular motor (e.g., a kinesin, or myosin) moving on a
periodic molecular track (microtubule, actin filament, etc.) is
discussed from a general viewpoint open to experimental test.
An elementary “barometric” relation for the driving force is
introduced that (i) applies to a range of kinetic and stochas-
tic models, (ii) is consistent with more elaborate expressions
entailing explicit representations of externally applied loads,
and (iii) sufficiently close to thermal equilibrium, satisfies an
Einstein-type relation in terms of the velocity and diffusion
coefficient of the (load-free) motor. Even in the simplest two-
state models, the velocity-vs.-load plots exhibit a variety of
contrasting shapes (including nonmonotonic behavior). Pre-
viously suggested bounds on the driving force are shown to
be inapplicable in general by analyzing discrete jump models
with waiting time distributions.

Molecular motors are protein molecules such as myosin, ki-
nesin, dynein, and RNA polymerase, that move along linear
tracks (actin filaments, microtubules, DNA) and perform tasks
vital to the life of the organism—muscle contraction, cell divi-
sion, intracellular transport, and genomic transcription (1–5).
Understanding how they operate represents a significant chal-
lenge. The hydrolysis of adenosine triphosphate (ATP), with
the release of adenosine diphosphate (ADP) and inorganic
phosphate (Pi), is known to be the power source for many
motor proteins. An activated motor may well be in a dynami-
cal or, better, a stochastic steady state but it cannot be in full
thermal equilibrium.

Striking in vitro experiments observing individual motor pro-
teins moving under controlled external loads (6–11) have stim-
ulated enhanced theoretical work aimed at understanding the
mechanisms by which a biological motor functions. From a
broad theoretical perspective, a molecular motor is a micro-
scopic object that moves predominantly in one direction along
a “polarized” one-dimensional periodic structure, namely, the
molecular track (1–11). In recent years, in addition to tradi-
tional chemical kinetic descriptions (see, e.g., ref. 12 and ref-
erences therein) and various more detailed schemes (11, 13,
14), so-called “thermal ratchet” models have been proposed
to account for the mechanics: see the review (15).

A common feature of most approaches is that a mo-
tor protein molecule is associated with a labeled site l
(= 0;51;52, : : :) on the track and is pictured as being in
one of N essentially discrete states j, which may be free of
(say, j = 0) or bound to ATP and its various hydrolysis prod-
ucts (j = 1; 2; : : : ;N − 1). Thus, for a kinesin molecule, K, on
a microtubule, M, the (N = 4) states identified might be M·K,
M·K·ATP, M·K·ADP·Pi, and M·K·ADP (8, 12). Transition
rates between these states can be introduced via

u1 u2 uN−1 uN

0l ⇀↽ 1l ⇀↽ · · · ⇀↽ �N − 1�l ⇀↽ 0l+1;

w1 w2 wN−1 wN

[1]

where the subscripts indicate that the states j are associ-
ated with successive sites, l and l + 1, on the track spaced
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at distances 1x = xl+1 − xl = d: this defines the step size
d. Of course, states jl; jl+1; : : : ; jl+n differ physically only
in their spatial displacements d; 2d; : : : ; nd, along the track.
By the same token, the rates uj and wj are independent of
l (or x = ld); however, in the subsequent developments it
proves useful to allow for spatially dependent rates uj�l� and
wj�l�.

To properly represent physicochemical reality (that is, mi-
croscopic reversibility) none of the forward rates, uj , or back-
ward rates, wj , may strictly vanish even though some, such
as the last reverse rate, wN , might be extremely small (11,
12). On the other hand, if, as one observes in the presence
of free ATP, the motor moves under no external load to the
right (increasing x), the transition rates cannot (all) satisfy
the usual conditions of detailed balance that would charac-
terize thermal equilibrium if Eq. 1 were regarded as a set
of chemical reactions (near equilibrium) between effective
species jl (15). [Notice that one may envisage a second-order
rate process, e.g., M·K + ATP ⇀↽ M·K·ATP, to conclude
u1 = k1[ATP]; this can then lead to Michaelis–Menten type
rate-vs.-concentration relations (6). However, one might also
contemplate a small “spontaneous” or first-order background
rate, u1;0 , 0, that exists even in the absence of ATP.]

Now, within statistical physics, the kinetic scheme in Eq. 1
represents a one-dimensional hopping process of a particle on
a periodic but, in general, asymmetric lattice. After initial tran-
sients, the particle will move (16) with steady (mean) velocity
V and diffuse (with respect to the mean position, x = Vt,
at time t) with a diffusion constant D. Complicated, but ex-
act, equations for V and D in terms of uj and wj have been
obtained for all N (16), as exhibited in the Appendix. A di-
mensionless, overall rate factor that, rather naturally, appears
(see Eq. A1), is given by the product

0 =
N−1∏
j=0

(
uj

wj

)
A e·: [2]

This will play an important role in our discussion. Note, in-
deed, that viewing Eq. 1 as a standard set of chemical reac-
tions and requiring detailed balance would impose 0 A 1 (or
· = 0), whereas 0 , 1 (or · , 0) is needed for a positive
velocity V . [One might comment, however, (17) that as re-
gards the full chemistry, the complex of motor protein plus
track may be regarded simply as catalyzing the hydrolysis of
ATP: the reaction rates for this overall process may then be
expected to satisfy detailed balance.]

The simplest or “minimal” physical models have N = 2,
and one can then calculate analytically not only the steady
state behavior but also the full transient responses, specifi-
cally, the probabilities, Pj�ly t�, of being in state jl (“at” site l)
at time t having started, say, at site l = 0 in state j = 0 at time
t = 0 (see ref. 17). In ref. 17 only the special (limiting) cases
with wN A w2 = 0 were treated; but as seen below, this limit
can be misleading, and so for completeness (and for possi-
ble comparisons with experiment and simulation), we present
the general N = 2 results (see Appendix). In particular, the
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velocity and diffusion constant for N = 2 are

V = �u1u2 −w1w2�d
u1 + u2 +w1 +w2

A �0− 1�ωd; [3]

D = 1
2

[
0+ 1− 2�0− 1�2ω/σ]ωd2; [4]

where 0 = u1u2/w1w2 (as in Eq. 2), and for convenience, we
have introduced the associated overall rates

σ = u1 + u2 +w1 +w2; ω = w1w2/σ: [5]

One can, of course, envisage more complicated schemes
than Eq. 1, with various internal loops, parallel pathways, etc.‡
In all cases, however, there will be a well defined (zero-load)
steady-state velocity V and a diffusion constant D (indepen-
dent of the particular states, j) which are susceptible to esti-
mation by simulation even though their explicit mathematical
expressions may be intractable. Furthermore, in real systems
both V , as often demonstrated (6, 8–11), and D (7) are sus-
ceptible to experimental measurement.

Now there arises an obvious but crucial question, namely:
“What (mean) driving force, f , will such a general motor pro-
tein model exert as it moves along the track?” That is the
issue we address here from a theoretical standpoint.

Analysis

Maximum Driving Force. The hydrolysis of one ATP mol-
ecule releases a free energy 1G0 of about 0:50 3 10−19J [cor-
responding to 7:3 Kcal/M or 12 kBT at typical in vitro tem-
peratures, T (3)]. If all of this free energy could be converted
into mechanical energy and move the motor protein through
a distance 1x = d, the step size (going from state 0l to 0l+1:
see Eq. 1), the force exerted would be

fmax = 1G0/d: [6]

Accepting that one molecule of ATP is sufficient to translo-
cate the motor protein by one step (7), this expression clearly
represents the maximal driving force that can be exerted. For
a kinesin moving on a microtubule (6–12) with d ı 8:2 nm (9)
it yields fmax ı 6:2 pN. If f is the driving force actually real-
ized, the efficiency of a motor protein may sensibly be defined
by ε = f/fmax.

Einstein Force Scale. Consider a small (“mesoscopic”) par-
ticle with “instantaneous” position x�t� and velocity v�t� that
undergoes one-dimensional Brownian motion in a fixed, slowly
varying external potential, 8�x�. Under a constant external
force, F = −�d8/dx�, the particle diffuses with a diffusion
constant which, for long times, t, satisfies

D 8
[�x2�t�� − �x�t��2]/2t; [7]

where �·� denotes a statistical average (18–21). In addition, the
particle experiences an (effective) frictional force, fE = ζv�t�,
where ζ is a friction coefficient determined by the environ-
ment (18–21). In a steady state, the friction balances the ex-
ternal force, F , leading to a drift motion, �x�t�� 8 Vt, with
mean velocity V = F/ζ = fE/ζ. Now, by definition, Brownian
motion takes place within full thermal equilibrium: that fact
dictates (18–21) the Einstein relation ζ = kBT/D, which, in
turn, implies the result

fE = kBTV/D: [8]

‡Thus a backwards reaction directly from, say, state j†
l to 0l could account

for “futile” ATP hydrolysis, i.e., without forward motion of the motor
(13); but note that within N = 2 models (which enforce j† = 1) the
phenomenon may be described simply by including the futile-hydrolysis
parallel reaction rate in the backward rate w1.

In the present context this is an appealing formula in that
it sets a force scale in terms only of the velocity, V , and the
diffusion constant, D, predicted by a motor-protein model (or
observed in an experiment or simulation); one might call it
the “Einstein scale.” However, because an activated molecu-
lar motor is not a Brownian particle and cannot be described
by thermal equilibrium, there are no grounds for expecting
fE to be related to the proper driving force, f . Nevertheless,
we will show that in a certain limit such a Brownian motion
“mimic” of an activated motor protein does provide an appro-
priate prediction for f . Indeed, ref. 17 accepted the identifi-
cation f = fE without discussion and used Eq. 8 to estimate
driving forces for restricted (w2 = 0) N = 2 models: the val-
ues of f so obtained were not unreasonable in comparison
with experiments (17).

It should, perhaps, be mentioned in passing that ref. 22 (see
also ref. 13) invokes an Einstein relation in an analysis of
“protein friction.” However, this is a rather different context
in which many “blocked” motor proteins are attached to a
substrate and a rigid microtubule diffuses, apparently freely,
close by in the medium above. Quantitative arguments (13,
22) explain the large frictional slowdown observed (relative to
an Einstein-relation estimate) as due to weak protein binding
and unbinding.

Barometric Formulation. Although the identification of the
motor driving force f with fE is unjustified, it would be desir-
able to have a soundly based, general expression for f that,
like fE , does not entail any intrinsic modifications or exten-
sions of the motor model or of the associated physicochemical
picture. To that end, consider the placement of an “impass-
able block” or barrier on the molecular track, say, between
sites L and L+ 1 (� 1) or at distance x = D = l0d from the
origin x = 0 (fixed, as we suppose, by where the motor starts).
Such a barrier may be realized theoretically by decreeing that
all states jl for l � L+1 are inaccessible; this may be achieved
simply by setting one of the local forward rate constants, say,
uJ+1�l = L�, equal to zero. No other rate constants need be
modified; but if, perhaps to take cognizance of some aspects of
a realistic barrier, further nearby rate constants are changed,
it will have no consequences for the main conclusions.

It is intuitively clear that running a molecular motor up
to such a barrier will lead [provided it does not detach
from the track or “freeze” irreversibly, as might happen
in practice (6, 10)] to a stationary probability distribution,
Pj�l; t→:� = P:j �L − l�, in which z = �L − l�d = D − x
measures the distance back from the barrier. On very gen-
eral theoretical grounds one should expect this distribution
to decay exponentially with increasing z (except for possible
deviations close to the barrier) so that, explicitly, one has

P:j �z/d� 8 Aje
−κz: [9]

The (positive) decay constant κ should, in principle, be exper-
imentally measurable (although this may be difficult if κd is
large). The amplitude ratios Aj/A0 must depend on the vari-
ous rate ratios, ui/wi, while A0 is set simply by normalization.

To justify this surmise for the kinetic scheme in Eq. 1 (al-
though it is of general validity), note that the mean flow be-
tween adjacent states 0l and �N − 1�l−1 and between jl and
�j − 1�l [for j = 1; 2; : : : ; �N − 1�] must vanish for a station-
ary distribution. Balancing local forward and backward rates
thus yields

uN�l − 1�P:N−1�L− l + 1� = wN�l − 1�P:0 �L− l�;
uj�l�P:j−1�L− l� = wj�l�P:j �L− l�; [10]

for j = 1; 2; : : : ; �N − 1�. Starting from an initial nonzero
value P:J �0�, one can then recursively determine P:J−1�0�;
P:J−2�0�; · · · ; P:0 �0�; P:N−1�1�; P:N−2�1�; · · · : By induction, this
leads directly to Eq. 9 [since the uj�l�, and wj�l� become in-
dependent of l for, say, l + L− l0 where l0 is a fixed integer].
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Most crucially one finds (with the notation of Eq. 2) that the
decay constant is simply

κ = �ln0�/d = ·/d: [11]

Now, to interpret these results, consider a dilute gas of
molecules of mass m moving in a gravitational field that
acts “downwards” along the z axis. Each molecule then
has a weight fG = mg; in addition, the equilibrium density
distribution is given by (23)

ρ�z� = ρ�0�e−mgz/kBT ; [12]

where ρ�0� is the density at the level z = 0. [Any deviations
arising close to the “lower” wall (at z ı 0) due to molecular
size, structure, etc., have been neglected.] Comparing this well
known barometric formula with the distribution Eq. 9 leads us
to identify the driving force f of the molecular motor with

fB = kBT �ln0�/d = kBT·/d: [13]

The subscript B here serves merely to indicate the barometric
analogy underlying our identification. By comparison with Eq.
6 for fmax, we may expect · . 1G0/kBT for a real molecular
motor.

Before studying this result in relation to extensions of Eq. 1
needed to describe a motor functioning under external loads,
let us compare fB with fE .

Barometric vs. Einstein Scale. Suppose the molecular mo-
tor operates close to equilibrium in the sense that · = ln0 is
small. Then, on expanding in · at fixed ω/σ , Eqs. 2–5 and 13
yield

fB/fE = 1+ [ 1
12 − �ω/σ�

]
·2 − 1

2 �ω/σ�·3 + · · · ; [14]

for N = 2. Evidently, the coefficient of · vanishes identically!
Furthermore, one finds 0 + ω/σ � 1

16 so that the coefficient
of ·2 is small, lying between 1

48 and 1
12 . Consequently, and as

anticipated, the Einstein scale approximates the barometric
result very well when the motor operates sufficiently close to
equilibrium. Indeed, for 0 + 10, calculations show that fB
can exceed fE by no more than 44%. Furthermore, the series
truncated at O�·2� in Eq. 14 is reasonably accurate up to · ı
5 (0 ı 150) where one has 1:473 + fB/fE + 2:535; beyond
that, the bounds 1

4 · + fB/fE . 1
2 · are effective.

These specific results are limited to N = 2; but we suspect
(and have checked for N = 3) that the vanishing of the O�·�
term in Eq. 14 is independent of N . Likewise, we expect fB
always to rise steadily above fE when · increases. Indeed, on
recalling Eq. 2 for 0, one observes from Eq. 13 that fB is
unbounded above and so, with an injudicious assignment of
rate constants, it may even exceed fmax (as given in Eq. 1)!
Conversely, one may show from Eqs. 3, 4, and 8 that fE for
N = 2 is bounded above by 4kBT/d (17). However, we will
demonstrate below that this bound on fE is rather artificial
and does not apply for models that account directly for the
discreteness of ATP hydrolysis.

Stalling Force Measured by Spring Compression. In a typi-
cal experiment on motor proteins (6–10), optical tweezers are
used to carry a silica bead coated with a few molecules of the
motor protein up to the molecular track. Then a single motor
binds to the track and starts to move, exerting a force against
the opposing load, F , as it pulls the bead towards a side of the
optical trap. The external force F is a linear function of the
displacement from the trap center, and the constant of pro-
portionality can be measured. Thus the trap and bead work
like a calibrated spring acting on the molecular motor. To rep-
resent such an experiment the load-free scheme embodied in
Eq. 1 must, clearly, be extended.

To this end, suppose the motor moves in a slowly varying
external potential, 8�x�, so that in translocating from site l to

l + 1, additional mechanical work 18�x = ld� = 8�x+d� −
8�x� must be done (relative to the load-free situation). Of
course, this corresponds to imposition of a local external force,
F�x� = 18�x�/d, directed negatively. For an (ideal) optical
trap of spring constant K we may take

8�x� = 1
2Kx

2; F�x� = K(x+ 1
2d
)
: [15]

In such a situation the motor should, in effect, compress the
spring and, as t increases, attain a stationary distribution, say
PS0 �l�, where, for simplicity, we focus only on the (free) states
0l. This distribution should peak at some lS , corresponding
to a mean (or most probable) compression of the spring by
a displacement xS = lSd. Then the measured “stalling force”
would be fS = KxS .

Now it is physically clear that under any local load, F�x�,
the transition rates, uj�l� and wj�l�, must change. If, as tradi-
tional, one views the chemical transitions between successive
states, j and j+1, as proceeding in quasiequilibrium over var-
ious free energy barriers (13), one expects (in leading approx-
imation) the rates to change exponentially with F�x�d/kBT .
But how the exponential loading factors should be distributed
among the various reaction processes, j ⇀↽ �j+ 1�, is far from
clear: indeed, this distribution is of considerable interest in
understanding the motor mechanism at a microscopic level.
Without prejudice, therefore, we will explore the quasiequilib-
rium hypothesis that under a local load, F , the local transition
rates change in accord with

uj ⇒u�F�j = u�0�j e−θ
+
j Fd/kBT ;

wj ⇒w�F�j = w�0�j e+θ
−
j Fd/kBT : [16]

The distribution factors, θ+j and θ−j , need not be of uniform
sign; but we certainly expect the overall factor,

θ =
N∑
j=1

�θ+j + θ−j �; [17]

to be positive, implying an opposition to motion. Indeed,
should the motor undergo diffusion in thermal equilibrium
when not activated by ATP (as suggested parenthetically in
the introductory discussion of Eq. 1), detailed balance con-
siderations would dictate θ = 1. As a supplement to our
quasiequilibrium hypothesis this value of θ is also plausible
for an activated motor that operates not too far from equi-
librium. Notice that a negative θ+J or θ−J simply means that
the corresponding forward rate, uJ , is enhanced, or the re-
verse rate, wJ , is diminished by the internal molecular strain
induced in the motor by the load.

Accepting Eq. 16 we can find the stationary distribution
PS0 �l� with the aid of the rate-balance Eq. 10 [replacing
P:j �L− l� by PSj �l� and the rates uj and wj in accord with
Eq. 16]. The most probable motor location, lS , follows by
equating PS0 �l� and PS0 �l + 1�, which leads directly to the
condition

0�F��l� A
N∏
j=1

�u�F�j �l�/w�F�j �l�� = 0�0�e−θF�x�d/kBT = 1: [18]

Solving this determines xS = lSd and thence yields the mea-
sured spring or stalling force

fS = kBT �ln0�/θd = kBT·/θd; [19]

where we have, of course, identified the zero-load rate factor,
0�0�, with the original rate factor 0 in Eq. 2.

It is striking that this expression for the stalling force
(which depends on the quasiequilibrium hypothesis, Eq. 16,
that is needed to extend the original kinetic model) agrees
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precisely with the barometric expression Eq. 13 for fB, pro-
vided one accepts the natural, near-equilibrium evaluation
θ = 1. We regard this overall consistency as strengthening
both approaches.

Velocity vs. Load. The extended rate constants u�F�j and
w
�F�
j given in Eq. 16 also serve to provide a relation for the

motor velocity, V �F�, as a function of a steady load force,
F [and, equally, for the load-dependent diffusion constant,
D�F�]. For arbitrary N one may appeal to Eq. A1, which
shows, as expected, that the stalling load, FS , which brings
V �F� to zero, agrees with Eq. 19, i.e., FS = fS . To write an
explicit result for N = 2 in an illuminating form, we introduce
the reduced force and modified load factors

η = F/FS and 15j = 1
2 − �θ5j /θ�: [20]

Then from Eqs. 3, 16, and 19 we obtain

V �F�
V �0� =

σ sinh� 1
2 ·�1− η��/sinh� 1

2 ·�
u1e

−1+2 ·η + u2e
−1+1 ·η +w1e

1−2 ·η +w2e
1−1 ·η

; [21]

where, naturally, V �0� is simply the no-load result of Eq. 3;
thus the right hand side reduces to unity when η = 0 (and
vanishes as η→ 1).

Now for · small (say, . 2), so that the motor is operating
not too far from equilibrium, one has V �F� 8 V �0��1−η�/
�1 + c·η�. This represents a hyperbolic force law which will
be concave or convex depending on the sign, + or −, of c:
see the illustrative examples in Fig. 1. For small c the law is
close to linear and, in fact, c vanishes whenever u11

+
2 +u21

+
1 =

w11
−
2 +w21

−
1 . This condition has many solutions; for example,

if the backward rates are small, so that δ = �w1 + w2�/�u1 +
u2� . 0:1, say, the loading scheme θ+1 ı θ+2 8

1
2θ/�1 + δ�

yields a near-vanishing c.
On the other hand, if u1 greatly exceeds u2, w1, and w2,

the reduced (V; F) plots become insensitive to u1. Then if, as
mentioned (6), one has u1 ı k1[ATP], the plots will become
independent of the ATP concentration (6). Furthermore, if
· is large but �θ+2 /θ�· ı 1, the (V; F) plots will be close to
linear.

Although straight, convex, and concave velocity-load plots
are readily generated, other reasonable values of the six pa-
rameters: ·, w1/u1, w2/u1, and θ+2 /θ, θ−1 /θ and θ−2 /θ, yield
plots exhibiting points of inflection of either sense, as shown
in Fig. 1. However, plots with negative inflection points, such

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
                                 η = F/FS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V(F)

V(0)

(a)

(b)

(c)

(d)

(e)

Fig. 1. Examples of velocity-load plots for N = 2 models with
various parameter sets �·y �w1; w2�/u1y �θ+2 ; θ−1 = θ−2 �/θ�: (a) �10−2y
0:99; 0:99y 1

2 ; 0�, (b) �9:2y 10−2; 10−2y 1
2 ; 0�, (c) �10−2y 10−2; 10−2y 0; 1

2 �,
(d) �11:1y 10−4; 0:15y 0; 1

2 �, (e) �23:0y 10−5; 10−5y 0:07; 0:43�. Note that
V �0� is the velocity at zero load (Eq. 3) while FS denotes the stalling
load.

as (e), are realized in relatively small regions of the parame-
ter space. If negative θ+2 or θ+1 are admitted (see after Eq. 17)
the velocity may initially rise when a load is imposed! Plots
with two inflection points are then also allowed. Thus if one
could determine plausible values for the no-load transition-
rate ratios, experimental �V; F� plots might, at least for an
N = 2 model, throw some light on the load distribution pa-
rameters, θ5j .

Discrete Jump Models. As mentioned above, the Einstein
force scale obtained from the kinetic scheme, Eq. 1, is sub-
ject to a fairly stringent bound. Analyzing the expression
fE/kBT = V/D (see Eq. 8) for the case N = 2 (using Eqs.
3–6) we can prove that for all rates uj;wj , 0, the Einstein
scale satisfies fE/kBT � 2N/d; the maximum for N = 2 is
realized for uniform rates uj = u0 � wj = w0 (all j), and we
believe the same condition yields the bound as stated gener-
ally for all N . (The uniformity condition can be understood
heuristically since in such a case there are no distinguishing
rate-limiting steps in the cycle. The N = 2 model studied
in ref. 17 also respects the lower bound fE/kBT , 2/d; but
this is attributable to the special limiting situation, w2 = 0,
studied there which cannot be literally true.)

Our purpose here is to demonstrate that these bounds on fE
are related to the continuous-time picture of the rate process
embodied in the kinetic master equations based on Eq. 1; in
essence, these force a minimum value of the diffusion constant
D. To see this most directly, consider an (N = 1)-state model
with master equation

∂P0

∂t
�l; t� = uP0�l − 1; t� + wP0�l + 1; t�

− �u+ w�P0�l; t�; [22]

where we have put u1 = u � w1 = w , 0. Then one finds

V = �u− w�d; D = 1
2 �u+w�d2; [23]

(see, e.g., ref. 16). Note the lower limit D , 1
2ud

2, which is
approached when w/u→ 0. This leads directly to the bound
fE/kBT + 2/d.

By contrast, consider a discrete event sequence in which a
forward or backward jump is attempted at (mean) time in-
tervals 1t = τ (triggered, one might picture for a molecular
motor, by the arrival of individual ATP molecules). If P̌0�lyn�
is the probability that the (motor) particle is at site l after n
jump attempts, one has (19, 20, 24)

P̌0�lyn+ 1� = p+P̌0�l − 1yn� + p0P̌0�lyn�
+ p−P̌0�l + 1yn�; [24]

where p+ and p− are the probabilities of completing a positive
or negative step while p0 = 1− p+ − p− is the probability of
remaining at the same site. If one sets p+ = uτ and p− = wτ,
and identifies the time as t 8 nτ, this discrete master equation
reduces to the continuous form, Eq. 22, in the limit τ → 0
(24).

Now the mean displacement �x�n after n = 1 attempts is
clearly �p+ − p−�d so that the mean velocity is

V = �p+ − p−�d/τ = �u−w�d: [25]

Note that the identifications appropriate to the continuous
limit yield agreement with Eq. 23. To compute D we may
use Eq. 7 with only a short time interval, specifically t = τ,
since, by assumption, successive jump attempts are uncorre-
lated. Thus, from �x2�1 = �p+ + p−�d2 we obtain

D = 1
2 �d2/τ��p+ + p− − �p+ − p−�2�

= 1
2 �u+ w − �u−w�2τ�d2: [26]
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To see that D now has no positive lower bound, we may spe-
cialize to the case p0 = 0 or consider the limit p−�= wτ� �
p+: then one finds D 9 �d2/τ�p+�1− p+� which becomes in-
definitely small when p+ approaches unity. Hence no upper
bound on fE exists in such a discrete jump model. Indeed, it is
intuitively clear that in the limit p+ = 1 (so that p0 = p− = 0)
the particle moves essentially ballistically at speed d/τ with no
dispersion.

Notice also that the barometric formulation can be applied
directly to the jump model by using Eq. 24. It leads precisely
to the previous form, Eq. 13, but with 0 = p+/p−; however,
this agrees exactly with the continuous-time (N = 1) result
0 = u/w when, as above, one puts p+ = uτ and p− = wτ.
In addition, the ratio R�·� = fB/fE obeys Eq. 14 but with, in
leading order, (ω/σ) replaced by 1

2p− = �1−p0�/2�0+1�. For
· , 2 one has 1

2p− + 0:06 and R�·� varies much as discussed
above for the continuous case.

It might be objected that our arguments have more or less
assumed that the jump attempts occur regularly at times nτ
whereas, more realistically, there should be some distribution,
say ψ�t�, of waiting times between one event and the next.
Then τ would be the mean time between attempts, defined by

τ = t with tn =
∫ :

0
tnψ�t�dt: [27]

Such a model may be studied along the lines of Montroll
and Scher (24). Provided ψ�t� decreases sufficiently fast when
t → : that the second moment t2 is finite, the analysis for
V and D can be carried through: it shows again that D is
unbounded below while fE 9 V/D is unbounded above. In-
deed, Eq. 25 for V remains valid while Eq. 26 for D gains
a factor �1−2� before each squared term, �p+ − p−�2 and
�u−w�2. The parameter 2 = �t2−t2�/t2 � 0 measures the rel-
ative width or “spread” of the waiting time distribution ψ�t�:
e.g., for ψ�t� 9 tν−1e−γt with ν; γ , 0, one has§ τ = ν/γ and
2 = 1/ν. The sharp distribution originally envisaged corre-
sponds to the limit ν→ :.

Finally, note that we can also analyze precisely multistate
versions of these discrete jump models with waiting times.

Discussion and Summary

To understand the driving force, f , exerted by a molecular
motor that takes steps of size d on a molecular track, we
have analyzed a broad class of stochastic models: in partic-
ular, Eqs. 1 and 2 embody a general, “linear” reaction se-
quence. In the presence of a constant free energy source, the
motor will achieve a steady velocity V (, 0) but with fluc-
tuations about the mean position, �x�t�� = Vt, described by
a diffusion constant, D, that may be measured by observing
the variance (see Eq. 7). Table 1 lists various force scales that
then arise and their relation to f .

By way of a concrete numerical illustration, consider a ki-
nesin molecule moving on a microtubule (2–4, 6–10, 12) for
which d ı 8:2 nm (9). Svoboda, Mitra, and Block (6) observed
V ı 670 nm/s when [ATP] = 2 mM and measured the vari-
ance from which we obtain D ı 1395 nm2/s. At T = 300 K
these data yield fE ı 2:0 pN. On the other hand, the observed
stalling force was fS ı 5−6 pN (6, 7), significantly larger than
fE , as we have argued it should be. Note also, comparing with
the maximal force, fmax ı 6:2 pN, that the observed efficiency
ε, is in the range 80–95%. [This observational estimate does
not allow for the possible “wastage” of ATP by futile hydroly-
sis (13) without translocation of the motor: recall the remark
in the footnote to the sentence following Eq. 5, above.]

§The specific results quoted in ref. 24, equations 75 for ν = 1
2 and ν = 2,

are in error (and the factor 4 in equation 76 should read 2). Dr. Harvey
Scher has kindly acknowledged the need for these corrections.

Table 1. Forces related to a Molecular Motor

Force Notation and Relations Eq.

Maximum driving force fmax = 1G0/d , f 6
Einstein Scale fE = kBTV/D + f 8
Gravitational force fG = mg 12
Barometric force fB = kBTκ 7= f 12, 13
Stalling force fS = kBT·/θd

?= f 19
Load and stalling load F , FS , η = F/FS 20

The “barometric” force scale, fB, arises by considering an
obstacle that blocks the motor’s motion on the track: the re-
sulting statistically stationary distribution decays with the dis-
tance z from the obstacle as e−κz (see Eq. 9). It would be
interesting (although difficult) to measure κ and to compare
fB, so derived, with the observed stalling force fS .

For the general (N = 2)-state model (see Eqs. 1–5) with
transition rates u1, u2, w1, and w2 one has fB = �kBT/d� 3
ln�u1u2/w1w2�. For kinesin (from Drosophila) Gilbert and
Johnson (12) studied the kinetics by using chemical-quench
flow methods. Assuming [ATP] = 2 mM their data show that
u1 = 3800 s−1, u2 = 15 s−1, and w1 = 200 s−1 represent a
sensible map on to an N = 2 model; however, w2 proved
unobservably small. Merely for illustration, therefore, sup-
pose w2 = u2/100 = 0:15 s−1. This gives V ı 116 nm/s and
D ı 474 nm2/s, which yield fE ı 1:0 pN (at T = 300 K),
while the rates give fB ı 3:8 pN. The agreement with the
results of Svoboda et al. is not impressive: nevertheless, the
orders of magnitude, the inequality fB , fE , and the rough
equality fB ı fS are in full accord with our analysis.

More recently, Higuchi et al. (9) obtained data (for bovine
brain kinesin) leading us to u1 ı 1400 s−1 and u2 ı 45 s−1,
in only rough agreement with the values derived from ref.
12. The ad hoc assumption w1/u1 ı w2/u2 ı 1/100 yields
V ı 354 nm/s and D ı 1370 nm2/s, closer to observations
(6). Likewise, fE ı 1:1 pN and fB ı 4:7 pN now accord better
with the direct experiments (although these values do depend
logarithmically on w1 and w2). While the general theoretical
picture is supported, further experiments on standardized ki-
nesin samples would clearly be valuable and could provide
more stringent tests.

To discuss the velocity V �F� of a motor under a load F , the
transition rates must be modified: an appropriate quasiequilib-
rium hypothesis is embodied in Eqs. 16 and 17 where the load-
distribution factors, θ5j , recognize that the various transitions
in a motor protein probably accept quite different fractions of
the total stress. Indeed, some forward rates might even be ac-
celerated, which could provide a mechanism to conserve, e.g.,
ATP under “no-load” conditions. It is natural to take the over-
all load-distribution factor θ (Eq. 17) as unity which leads to
the equality of fS and fB (see Eq. 19 et seq). However, θ = 1
can be doubted for real motors and might well be tested by
experiment or simulation.

Even for a two-state model, the expression for V �F� is quite
complex (see Eq. 21). As seen in Fig. 1, the six independent
parameters permit velocity-load plots of varied shapes (includ-
ing nonmonotonic forms not shown). Certain types, such as
(e) characterize small regions of the parameter space, but, in
general, the variation of V with F may reveal comparatively
little about the motor mechanism or parameter values.

Negative, i.e., assisting loads (F + 0) are predicted to speed
up the motor and this has been observed (10). Conversely,
under super-stalling loads (F , FS), backwards velocities are
predicted; single reverse steps of kinesin have then been seen
(10), but no steady reverse velocities have been reported.
This probably reflects very small terminal reverse rates, wN
(12). Indeed, these transitions presumably describe second
(or higher) order chemical reactions controlled by the low
concentrations of hydrolysis products. The frequently ob-
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served process of detachment from the track (6, 10) should
also be included in a fuller account.

The adequacy of the stochastic models encompassed by
Eq. 1 is challenged by lower bounds on the diffusion constant,
D, which yield upper bounds on fE . For kinesin at T = 300 K
this bound is 2.03 pN for any (N = 2)-state model. The data
of Svoboda et al. (6, 7) essentially meet this, but were the
bound violated, one might conclude that an N � 3 kinetic
model was needed. However, models in which the transitions
are described by discrete jumps occurring after certain waiting
times are not susceptible to these constraints. Such models
might well prove more realistic, although at present the sim-
pler kinetic representations seem adequate. Nevertheless, it
should be noted that the main principles we have enunciated
are not restricted to the N = 2 sequential kinetic models
specifically analyzed. Consequently, the observation of sig-
nificant violations would indicate serious deficiencies in the
general understanding of motor mechanisms.

Appendix

For a one-dimensional hopping model with N states and arbi-
trary transition rates uj and wj , as introduced in Eq. 1, Der-
rida (16) obtained the exact steady-state behavior. For the
drift velocity he found

V = d∑N
j=1 rj

(
1−

N−1∏
j=0

wj

uj

)
; [A1]

where d is the spatial period (or step-size) while

rj =
1
uj

(
1+

N−1∑
k=1

k∏
i=1

wj+i−1

uj+i

)
: [A2]

The expression for the diffusion constant (16) is similar but
more complex and less illuminating.

For N = 2, solutions can be obtained for all times following
the procedure outlined in ref. 17. Thus, the probability that
the particle is at site l in state jl (j = 0; 1) after a time t
having started at the origin, l = 0, is

Pj�l; t� =
∫ π

−π

dq

2π
e−iq�l+j/2�

[
4+�q�eλ+�q�t −4−�q�eλ−�q�t

]
[A3]

with rate parameters λ+�q� and λ−�q� given by

λ5�q�= 1
2

[
−σ 5

√
σ2 + 4u1u2�e2iq − 1�+ 4w1w2�e−2iq − 1�

]
;

[A4]

while σ is in Eq. 5 and the coefficient functions are

45�q� =
λ6�q� + u1 +w2

λ−�q� − λ+�q�
(

1+ λ5�q� + u1 +w2

u2e
iq +w1e

−iq

)
: [A5]
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